skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kim, Hyemi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Studies have indicated exaggerated Maritime Continent (MC) barrier effect in simulations of the Madden–Julian oscillation (MJO), a dominant source of subseasonal predictability in the tropics. This issue has plagued the modeling and operational forecasting communities for decades, while the sensitivity of MC barrier on MJO predictability has not been addressed quantitatively. In this study, perfect-model ensemble forecasts are conducted with an aquaplanet configuration of the Community Earth System Model version 2 (CESM2) in which both basic state and tropical modes of variability are reasonably simulated with a warm pool–like SST distribution. When water-covered terrain mimicking MC landmasses is added to the warm pool–like SST framework, the eastward propagation of the MJO is disturbed by the prescribed MC aqua-mountain. The MJO predictability estimate with the perfect-model experiment is about 6 weeks but reduces to about 4 weeks when the MJO is impeded by the MC aqua-mountain. Given that the recent operational forecasts show an average of 3–4 weeks of MJO prediction skill, we can conclude that improving the MJO propagation crossing the MC could improve the MJO skill to 5–6 weeks, close to the potential predictability found in this study (6 weeks). Therefore, more effort toward understanding and improving the MJO propagation is needed to enhance the MJO and MJO-related forecasts to improve the subseasonal-to-seasonal prediction.

     
    more » « less
  2. Abstract

    Understanding air pollution in East Asia is of great importance given its high population density and serious air pollution problems during winter. Here, we show that the day-to-day variability of East Asia air pollution, during the recent 21-year winters, is remotely influenced by the Madden–Julian Oscillation (MJO), a dominant mode of subseasonal variability in the tropics. In particular, the concentration of particulate matter with aerodynamic diameter less than 10 micron (PM10) becomes significantly high when the tropical convections are suppressed over the Indian Ocean (MJO phase 5–6), and becomes significantly low when those convections are enhanced (MJO phase 1–2). The station-averaged PM10difference between these two MJO phases reaches up to 15% of daily PM10variability, indicating that MJO is partly responsible for wintertime PM10variability in East Asia. This finding helps to better understanding the wintertime PM10variability in East Asia and monitoring high PM10days.

     
    more » « less
  3. Abstract

    Subseasonal tropical cyclone (TC) reforecasts from the Community Earth System Model version 2 (CAM6) subseasonal prediction system are examined in this study. We evaluate the modeled TC climatology and the probabilistic forecast skill of basin‐wide TC genesis at weekly temporal resolution. Prediction skill is calculated using the Brier skill score relative to a constant annual mean climatology and to a monthly varying seasonal climatology during TC season. The model captures the observed basin‐wide climatological TC seasonality and spatial distributions at weeks 1–6, but TC genesis is largely underestimated from Week 2 onward. For some basins and lead times, the predicted TC genesis is primarily controlled by the number of TC “seeds” and the mean‐state climate condition. The model has good prediction skill relative to the constant climatology across all the basins and lead times, but is only skillful in the eastern Pacific, North Indian Ocean, and Southern Hemisphere at Week 1 when compared to the seasonal climatology, indicating limited skill in predicting deviations from the seasonal cycle. We find strong modulations of the predicted TC genesis at up to 3 weeks of forecast lead time by the Madden‐Julian Oscillation. The interannual variability of predicted TC genesis and accumulated cyclone energy are skillfully predicted in the North Atlantic and the Northwestern Pacific, with a strong modulation by the El Nino‐Southern Oscillation.

     
    more » « less
  4. Abstract This study evaluates the ability of state-of-the-art subseasonal to seasonal (S2S) forecasting systems to represent and predict the teleconnections of the Madden Julian Oscillations and their effects on weather in terms of midlatitude weather patterns and North Atlantic tropical cyclones. This evaluation of forecast systems applies novel diagnostics developed to track teleconnections along their preferred pathways in the troposphere and stratosphere, and to measure the global and regional responses induced by teleconnections across both the Northern and Southern Hemispheres. Results of this study will help the modeling community understand to what extent the potential to predict the weather on S2S time scales is achieved by the current generation of forecasting systems, while informing where to focus further development efforts. The findings of this study will also provide impact modelers and decision makers with a better understanding of the potential of S2S predictions related to MJO teleconnections. 
    more » « less
  5. Abstract

    Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways.

     
    more » « less
  6. null (Ed.)
    Abstract There is a growing demand for understanding sources of predictability on subseasonal to seasonal (S2S) time scales. Predictability at subseasonal time scales is believed to come from processes varying slower than the atmosphere such as soil moisture, snowpack, sea ice, and ocean heat content. The stratosphere as well as tropospheric modes of variability can also provide predictability at subseasonal time scales. However, the contributions of the above sources to S2S predictability are not well quantified. Here we evaluate the subseasonal prediction skill of the Community Earth System Model, version 1 (CESM1), in the default version of the model as well as a version with the improved representation of stratospheric variability to assess the role of an improved stratosphere on prediction skill. We demonstrate that the subseasonal skill of CESM1 for surface temperature and precipitation is comparable to that of operational models. We find that a better-resolved stratosphere improves stratospheric but not surface prediction skill for weeks 3–4. 
    more » « less
  7. Abstract

    We investigate how the Madden‐Julian Oscillation (MJO), the dominant mode of tropical subseasonal variability, modulates the lifecycle of cool‐season North Pacific atmospheric rivers (ARs). When the enhanced (suppressed) convection center is located over the Indian Ocean (western Pacific), more AR events originate over eastern Asia and with fewer over the subtropical northern Pacific. When the enhanced (suppressed) convection is over the western Pacific (Indian Ocean), the opposite changes occur, with more AR events originate over the subtropical northern Pacific and fewer over eastern Asia. Dynamical processes involving anomalous MJO wind and seasonal mean moisture are found to be the dominant factors impacting these variations in AR origins. The MJO‐related anomalous geopotential height patterns are also shown to modulate the propagation of the AR events. These MJO–AR lifecycle relationships are further supported by model simulations.

     
    more » « less
  8. We propose a set of MJO teleconnection diagnostics that enables an objective evaluation of model simulations, a fair model-to-model comparison, and a consistent tracking of model improvement. Various skill metrics are derived from teleconnection diagnostics including five performance-based metrics that characterize the pattern, amplitude, east–west position, persistence, and consistency of MJO teleconnections and additional two process-oriented metrics that are designed to characterize the location and intensity of the anomalous Rossby wave source (RWS). The proposed teleconnection skill metrics are used to compare the characteristics of boreal winter MJO teleconnections (500-hPa geopotential height anomaly) over the Pacific–North America (PNA) region in 29 global climate models (GCMs). The results show that current GCMs generally produce MJO teleconnections that are stronger, more persistent, and extend too far to the east when compared to those observed in reanalysis. In general, models simulate more realistic teleconnection patterns when the MJO is in phases 2–3 or phases 7–8, which are characterized by a dipole convection pattern over the Indian Ocean and western to central Pacific. The higher model skill for phases 2, 7, and 8 may be due to these phases producing more consistent teleconnection patterns between individual MJO events than other phases, although the consistency is lower in most models than observed. Models that simulate realistic RWS patterns better reproduce MJO teleconnection patterns. 
    more » « less
  9. Abstract

    Atmospheric river (AR) and its impact on monsoon rainfall in East Asia are investigated by considering their month‐to‐month variations during the East Asian summer monsoon (EASM). The AR in the EASM, defined as an anomalously enhanced plume‐like water vapor transport, frequently forms over eastern China, Korea and western Japan. However, its characteristics vary from the early (June‐July) to the late (August‐September) period of the EASM. In the early EASM, AR is typically characterized by a quasi‐stationary monsoon southwesterly along the northern boundary of the western North Pacific subtropical high (WNPSH), which is further intensified by a migrating extratropical cyclone in the north. In contrast, the late‐EASM AR, which is less frequent than the early EASM AR, is primarily organized by a migrating extratropical cyclone. The quasi‐stationary monsoon southwesterly is less influential as the northern boundary of the WNPSH shifts northward, being decoupled from the subtropical ocean. Both the early‐ and late‐EASM ARs contribute substantially to monsoon rainfall, especially to heavy rainfall events. In the early EASM, 35%–70% of total rainfall amount and 60%–80% of heavy rainfall events in eastern China, Korea and western Japan are associated with AR. Although weakened, AR‐related rainfall is still significant in the late EASM in Korea and western Japan. These results indicate that AR is a key ingredient of EASM precipitation and its subseasonal variations should be taken into account to better understand and predict AR‐related extreme precipitation in East Asia.

     
    more » « less