skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Kimmel, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acquiring a precise model is a challenging task for many important robotic tasks and systems - including in-hand manipulation using underactuated, adaptive hands. Learning stochastic, data-driven models is a promising alternative as they provide not only a way to propagate forward the system dynamics, but also express the uncertainty present in the collected data. Therefore, such models en- able planning in the space of state distributions, i.e., in the belief space. This paper proposes a planning framework that employs stochastic, learned models, which ex- press a distribution of states as a set of particles. The integration achieves anytime behavior in terms of returning paths of increasing quality under constraints for the probability of success to achieve a goal. The focus of this effort is on pushing the efficiency of the overall methodology despite the notorious computational hardness of belief-space planning. Experiments show that the proposed framework enables reaching a desired goal with higher success rate compared to alternatives in sim- ple benchmarks. This work also provides an application to the motivating domain of in-hand manipulation with underactuated, adaptive hands, both in the case of physically-simulated experiments as well as demonstrations with a real hand. 
    more » « less
  2. This work proposes a framework for tracking a desired path of an object held by an adaptive hand via within-hand manipulation. Such underactuated hands are able to passively achieve stable contacts with objects. Combined with vision-based control and data-driven state estimation process, they can solve tasks without accurate hand-object models or multi-modal sensory feedback. In particular, a data-driven regression process is used here to estimate the probability of dropping the object for given manipulation states. Then, an optimization-based planner aims to track the desired path while avoiding states that are above a threshold probability of dropping the object. The optimized cost function, based on the principle of Dynamic-Time Warping (DTW), seeks to minimize the area between the desired and the followed path. By adapting the threshold for the probability of dropping the object, the framework can handle objects of different weights without retraining. Experiments involving writing letters with a marker, as well as tracing randomized paths, were conducted on the Yale Model T-42 hand. Results indicate that the framework successfully avoids undesirable states, while minimizing the proposed cost function, thereby producing object paths for within-hand manipulation that closely match the target ones. 
    more » « less
  3. This paper presents a practical approach for identifying unknown mechanical parameters, such as mass and friction models of manipulated rigid objects or actuated robotic links, in a succinct manner that aims to improve the performance of policy search algorithms. Key features of this approach are the use of off-the-shelf physics engines and the adaptation of a black-box Bayesian optimization framework for this purpose. The physics engine is used to reproduce in simulation experiments that are performed on a real robot, and the mechanical parameters of the simulated system are automatically fine-tuned so that the simulated trajectories match with the real ones. The optimized model is then used for learning a policy in simulation, before safely deploying it on the real robot. Given the well-known limitations of physics engines in modeling real-world objects, it is generally not possible to find a mechanical model that reproduces in simulation the real trajectories exactly. Moreover, there are many scenarios where a near-optimal policy can be found without having a perfect knowledge of the system. Therefore, searching for a perfect model may not be worth the computational effort in practice. The proposed approach aims then to identify a model that is good enough to approximate the value of a locally optimal policy with a certain confidence, instead of spending all the computational resources on searching for the most accurate model. Empirical evaluations, performed in simulation and on a real robotic manipulation task, show that model identification via physics engines can significantly boost the performance of policy search algorithms that are popular in robotics, such as TRPO, PoWER and PILCO, with no additional real-world data. 
    more » « less