skip to main content


Search for: All records

Creators/Authors contains: "Kirby, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Perspectives on past climate using lake sediments are critical for assessing modern and future climate change. These perspectives are especially important for water-stressed regions such as the western United States. One such region is northwestern California (CA), where Holocene-length hydroclimatic records are scarce. Here, we present a 9000-year, relative lake level record from Maddox Lake (CA) using a multi-indicator approach. The Early Holocene is characterized by variably low lake levels with a brief excursion to wetter climates/relative highstand ca. 8.4–8.06 cal ka BP, possibly related to the 8.2 ka cold event and changing Atlantic Meridional Overturning Circulation (AMOC). From 5.2–0.55 cal ka BP, Maddox Lake experienced a long-term regression, tracking changes in summer-winter insolation, tropical and northeast Pacific SSTs, and the southward migration of the ITCZ. This gradual regression culminated in a pronounced relative lowstand during the Medieval Climatic Anomaly (MCA). A marked relative highstand followed the MCA, correlative to the Little Ice Age. The latter reflects a far-field response to North Atlantic volcanism, solar variability, and possibly changes in AMOC and Arctic sea ice extent. Our results further confirm the hydroclimatic sensitivity of northwest California to various forcings including those emanating from the North Atlantic.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    This study examines the relationship between water depth and diatom assemblages from lake-sediment-surface samples at Kelly Lake, California. A total of 40 surface-sediment samples (integrated upper 5 cm) were taken at various depths within the small (~ 3.74 ha) 5.7 m-deep lake. Secchi depths, water temperature, pH, salinity, conductivity, and total dissolved solids were also measured. Some diatom species showed distinct association with depth (e.g.,Fragilaria crotonensis, Nitzschia semirobusta). The relationship between the complete diatom assemblages and water depth was analyzed and assessed by depth-cluster analysis, a one-way analysis of similarity, principal components analysis and canonical correspondence analysis. Statistically significant differences were found between the assemblages associated with shallow depth (0–1.25 m), mid-depth (1.25–3.75 m), and deep-water (3.75–5.2 m) locations. The relationship between diatom assemblages and lake depth allowed two transfer models to be developed using the Modern Analogue Technique and Weighted Averaging Partial Least Squares. These models were compared and assessed by residual scatter plots. The results indicate that diatom-inferred transfer models based on surface-sediment samples from a single, relatively small and shallow lake can be a useful tool for studying past hydroclimatic variability (e.g., lake depth) from similar lakes in California and other regions where the large number of lakes required for traditional transfer-function development may not exist.

     
    more » « less
  3. The cause, or causes, of the Pleistocene megafaunal extinctions have been difficult to establish, in part because poor spatiotemporal resolution in the fossil record hinders alignment of species disappearances with archeological and environmental data. We obtained 172 new radiocarbon dates on megafauna from Rancho La Brea in California spanning 15.6 to 10.0 thousand calendar years before present (ka). Seven species of extinct megafauna disappeared by 12.9 ka, before the onset of the Younger Dryas. Comparison with high-resolution regional datasets revealed that these disappearances coincided with an ecological state shift that followed aridification and vegetation changes during the Bølling-Allerød (14.69 to 12.89 ka). Time-series modeling implicates large-scale fires as the primary cause of the extirpations, and the catalyst of this state shift may have been mounting human impacts in a drying, warming, and increasingly fire-prone ecosystem.

     
    more » « less
    Free, publicly-accessible full text available August 18, 2024
  4. null (Ed.)
    Abstract Paleoperspectives of climate provide important information for understanding future climate, particularly in arid regions such as California, where water availability is uncertain from year to year. Here, we present a record from Barley Lake, California, focusing on the interval spanning the Younger Dryas (YD) to the early Holocene (EH), a period of acute and rapid global climate change. Twelve radiocarbon dates constrain the timing between 12.9 and 8.1 ka. We combine a variety of sediment analyses to infer changes in lake productivity, relative lake level, and runoff dynamics. In general, the lake is characterized by two states separated by a <200-year transition: (1) a variably deep, lower-productivity YD lake; and (2) a two-part variably shallow, higher-productivity EH lake. Inferred EH winter-precipitation runoff reveals dynamic multidecadal-to-centennial-scale variability, in agreement with the EH lake-level data. The Barley Lake archive captures both hemispheric and regional signals of climate change across the transition, suggesting a role for both ocean-atmosphere and insolation forcing. Our paleoperspective emphasizes California's sensitivity to climate change and how that change can generate abrupt shifts in limnological regimes. 
    more » « less
  5. Records of past climate can inform us on the natural range and mechanisms of climate change. In the arid Pacific southwestern United States (PSW), which includes southern California, there exist a variety of Holocene records that can be used to infer past winter conditions (moisture and/or temperature). Holocene records of summer climate, however, are rare from the PSW. In the future, climate changes due to anthropogenic forcing are expected to increase the severity of drought in the already water stressed PSW. Hot droughts are of considerable concern as summer temperatures rise. As a result, understanding how summer conditions changed in the past is critical to understanding future predictions under varied climate forcings. Here, we present a c. 10.9 kcal BP d18O.calcite/ record from Lake Elsinore, California, interpreted to reflect d18O.lake water/ values as controlled by over-water evaporation from summer-to-early fall. Our results reveal three millennial scale intervals: (1) the highly evaporative Early Holocene (10.55–6.65 kcal BP), (2) the less evaporative Mid-Holocene (6.65–2.65 kcal BP); and (3) the evaporative Late Holocene (2.65–0.55 kcal BP). These results are coupled with an inferred winter precipitation runoff (sand content) record from Kirby et al. (2010). Using these data together, we estimate the duration and severity of centennial-scale Holocene droughts and pluvials (e.g., high d18O.calcite/ values plus low sand content = drought and vice versa). Furthermore, the coupled d18O.calcite/ and sand data provide a generalized Holocene lake level history. The most severe, long-lasting droughts (i.e., maximum summer-to-early fall evaporation and minimum winter precipitation runoff) occur in the Early Holocene. Fewer, less severe, and shorter duration droughts occurred during the Mid-Holocene as pluvials became more common. Droughts return with less severity and duration in the Late Holocene. Notably, the Little Ice Age is characterized as the wettest period during the Late Holocene. 
    more » « less
  6. null (Ed.)
    Abstract. Holocene climate reconstructions are useful for understanding the diversefeatures and spatial heterogeneity of past and future climate change. Herewe present a database of western North American Holocene paleoclimaterecords. The database gathers paleoclimate time series from 184 terrestrialand marine sites, including 381 individual proxy records. The records spanat least 4000 of the last 12 000 years (median duration of 10 725 years)and have been screened for resolution, chronologic control, and climatesensitivity. Records were included that reflect temperature, hydroclimate,or circulation features. The database is shared in the machine readableLinked Paleo Data (LiPD) format and includes geochronologic data forgenerating site-level time-uncertain ensembles. This publicly accessible andcurated collection of proxy paleoclimate records will have wide researchapplications, including, for example, investigations of the primary featuresof ocean–atmospheric circulation along the eastern margin of the NorthPacific and the latitudinal response of climate to orbital changes. Thedatabase is available for download at https://doi.org/10.6084/m9.figshare.12863843.v1 (Routson and McKay, 2020). 
    more » « less
  7. Abstract

    Paleoenvironmental records from a southern California coastal saltmarsh reveal evidence for repeated late Holocene coseismic subsidence events. Field analysis of sediment gouge cores established discrete lithostratigraphic units extend across the wetland. Detailed sediment analyses reveal abrupt changes in lithology, percent total organic matter, grain size, and magnetic susceptibility. Microfossil analyses indicate that predominantly freshwater deposits bury relic intertidal deposits at three distinct depths. Radiocarbon dating indicates that the three burial events occurred in the last 2000 calendar years. Two of the three events are contemporaneous with large-magnitude paleoearthquakes along the Newport-Inglewood/Rose Canyon fault system. From these data, we infer that during large magnitude earthquakes a step-over along the fault zone results in the vertical displacement of an approximately 5-km2area that is consistent with the footprint of an estuary identified in pre-development maps. These findings provide insight on the evolution of the saltmarsh, coseismic deformation and earthquake recurrence in a wide area of southern California, and sensitive habitat already threatened by eustatic sea level rise.

     
    more » « less
  8. High resolution pollen analyses of sediment core LEDC10-1 from Lake Elsinore yield the first well-dated, terrestrial record of sub-centennial-scale ecologic change in coastal southern California between ~32 and 9 ka. In the Lake Elsinore watershed, the initial, mesic montane conifer forests dominated by Pinus, and Cupressaceae with trace amounts of Abies and Picea were replaced by a sequence of multiple, extended severe mega-droughts between ~27.5 and ~25.5 ka, in which halophytic and xerophytic herbs and shrubs occupied an ephemeral lake. This prolonged and extended dry interval, which corresponds with warm waters offshore, imply strengthening of the North Pacific High and persistent below-average winter precipitation. The subsequent, contrasting monotonic occurrence of montane conifers reflects little variation in cold, mesic climate until ~15 ka. Postglacial development of Quercus woodland and chaparral mark the return to more xeric, warmer conditions at this time. A brief reversal at ~13.1e~12.1 ka, as reflected by an expansion of Pinus, is correlative with the Younger Dryas and interrupts development of warm, postglacial climate. Subsequent gradual expansion of xeric vegetation post e Younger Dryas denotes the establishment of a winter hydroclimate regime in coastal southern California that is more similar to modern conditions. Pollen-based reconstructions of temperature and precipitation at Lake Elsinore are generally correlative with pollen-based paleoclimatic reconstructions and foraminifera based sea surface temperatures from Santa Barbara Basin in marine core ODP 893. The conspicuous absence of the ~27.5e~25.5 ka glacial “mega-drought” in the Santa Barbara Basin pollen record highlights the sensitivity of Lake Elsinore to hydroclimate change, and thus, the importance of this new record that indicates that mega-drought can occur during the full glacial when climatic boundary conditions and forcings differed substantially from the present. 
    more » « less