skip to main content


Search for: All records

Creators/Authors contains: "Kline, Jenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 20, 2025
  2. Free, publicly-accessible full text available April 16, 2025
  3. We present a novel dataset for animal behavior recognition collected in-situ using video from drones flown over the Mpala Research Centre in Kenya. Videos from DJI Mavic 2S drones flown in January 2023 were acquired at 5.4K resolution in accordance with IACUC protocols, and processed to detect and track each animal in the frames. An image subregion centered on each animal was extracted and combined in sequence to form a “mini-scene”. Be-haviors were then manually labeled for each frame of each mini-scene by a team of annotators overseen by an expert behavioral ecologist. The resulting labeled mini-scenes form our resulting behavior dataset, consisting of more than 10 hours of annotated videos of reticulated gi-raffes, plains zebras, and Grevy's zebras, and encompassing seven types of animal behavior and an additional category for occlusions. Benchmark results for state-of-the-art behavioral recognition architectures show labeling accu-racy of 61.9% for macro-average (per class), and 86.7% for micro-average (per instance). Our dataset complements recent larger, more diverse animal behavior sets and smaller, more specialized ones by being collected in-situ and from drones, both important considerations for the future of an-imal behavior research. The dataset can be accessed at https://dirtmaxim.github.io/kabr. 
    more » « less
  4. In situ imageomics is a new approach to study ecological, biological and evolutionary systems wherein large image and video data sets are captured in the wild and machine learning methods are used to infer biological traits of individual organisms, animal social groups, species, and even whole ecosystems. Monitoring biological traits over large spaces and long periods of time could enable new, data-driven approaches to wildlife conservation, biodiversity, and sustainable ecosystem management. However, to accurately infer biological traits, machine learning methods for images require voluminous and high quality data. Adaptive, data-driven approaches are hamstrung by the speed at which data can be captured and processed. Camera traps and unmanned aerial vehicles (UAVs) produce voluminous data, but lose track of individuals over large areas, fail to capture social dynamics, and waste time and storage on images with poor lighting and view angles. In this vision paper, we make the case for a research agenda for in situ imageomics that depends on significant advances in autonomic and self-aware computing. Precisely, we seek autonomous data collection that manages camera angles, aircraft positioning, conflicting actions for multiple traits of interest, energy availability, and cost factors. Given the tools to detect object and identify individuals, we propose a research challenge: Which optimization model should the data collection system employ to accurately identify, characterize, and draw inferences from biological traits while respecting a budget? Using zebra and giraffe behavioral data collected over three weeks at the Mpala Research Centre in Laikipia County, Kenya, we quantify the volume and quality of data collected using existing approaches. Our proposed autonomic navigation policy for in situ imageomics collection has an F1 score of 82% compared to an expert pilot, and provides greater safety and consistency, suggesting great potential for state-of-the-art autonomic approaches if they can be scaled up to fully address the problem. 
    more » « less