skip to main content


Search for: All records

Creators/Authors contains: "Kompella, Sastry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we study an age of information minimization problem in continuous-time and discrete-time status updating systems that involve multiple packet flows, multiple servers, and transmission errors. Four scheduling policies are proposed. We develop a unifying sample-path approach and use it to show that, when the packet generation and arrival times are synchronized across the flows, the proposed policies are (near) optimal for minimizing any time-dependent, symmetric, and non-decreasing penalty function of the ages of the flows over time in a stochastic ordering sense. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. The proliferation of IoT devices, with various capabilities in sensing, monitoring, and controlling, has prompted diverse emerging applications, highly relying on effective delivery of sensitive information gathered at edge devices to remote controllers for timely responses. To effectively deliver such information/status updates, this paper undertakes a holistic study of AoI in multi-hop networks by considering the relevant and realistic factors, aiming for optimizing information freshness by rapidly shipping sensitive updates captured at a source to its destination. In particular, we consider the multi-channel with OFDM (orthogonal frequency-division multiplexing) spectrum access in multi-hop networks and develop a rigorous mathematical model to optimize AoI at destination nodes. Real-world factors, including orthogonal channel access, wireless interference, and queuing model, are taken into account for the very first time to explore their impacts on the AoI. To this end, we propose two effective algorithms where the first one approximates the optimal solution as closely as we desire while the second one has polynomial time complexity, with a guaranteed performance gap to the optimal solution. The developed model and algorithms enable in-depth studies on AoI optimization problems in OFDM-based multi-hop wireless networks. Numerical results demonstrate that our solutions enjoy better AoI performance and that AoI is affected markedly by those realistic factors taken into our consideration. 
    more » « less
  3. While recent years have witnessed a steady trend of applying Deep Learning (DL) to networking systems, most of the underlying Deep Neural Networks (DNNs) suffer two major limitations. First, they fail to generalize to topologies unseen during training. This lack of generalizability hampers the ability of the DNNs to make good decisions every time the topology of the networking system changes. Second, existing DNNs commonly operate as "blackboxes" that are difficult to interpret by network operators, and hinder their deployment in practice. In this paper, we propose to rely on a recently developed family of graph-based DNNs to address the aforementioned limitations. More specifically, we focus on a network congestion prediction application and apply Graph Attention (GAT) models to make congestion predictions per link using the graph topology and time series of link loads as inputs. Evaluations on three real backbone networks demonstrate the benefits of our proposed approach in terms of prediction accuracy, generalizability, and interpretability. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)