Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2023
-
Free, publicly-accessible full text available November 5, 2023
-
Free, publicly-accessible full text available September 1, 2023
-
Healthcare capacity shortage contributes to poor access in many countries. Moreover, rapid urbanization often occurring in these countries has exacerbated the imbalance between healthcare capacity and need. One way to address the above challenge is expanding the total capacity and redistributing the capacity spatially. In this research, we studied the problem of locating new hospitals in a two-tier outpatient care system comprising multiple central and district hospitals, and upgrading existing district hospitals to central hospitals. We formulated the problem with a discrete location optimization model. To parameterize the optimization model, we used a multinomial logit model to characterize individual patients’ diverse hospital choice and to quantify the patient arrival rates at each hospital accordingly. To solve the hard nonlinear combinatorial optimization problem, we developed a queueing network model to approximate the impact of hospital locations on patient flows. We then proposed a multi-fidelity optimization approach, which involves both the aforementioned queuing network model as a surrogate and a self-developed stochastic simulation as the high-fidelity model. With a real-world case study of Shanghai, we demonstrated the changes in the care network and examined the impacts on the network design by population center emergence, governmental budget change and considering patients with differentmore »Free, publicly-accessible full text available September 7, 2023
-
While prior studies have designed incentive mechanisms to attract the public to share their collected data, they tend to ignore information asymmetry between data requesters and collectors. In reality, the sensing costs information (time cost, battery drainage, bandwidth occupation of mobile devices, and so on) is the private information of collectors, which is unknown by the data requester. In this article, we model the strategic interactions between health-data requester and collectors using a bilevel optimization model. Considering that the crowdsensing market is open and the participants are equal, we propose a Walrasian equilibrium-based pricing mechanism to coordinate the interest conflicts between health-data requesters and collectors. Specifically, based on the exchange economic theory, we transform the bilevel optimization problem into a social welfare maximization problem with the constraint condition that the balance between supply and demand, and dual decomposition is then employed to divide the social welfare maximization problem into a set of subproblems that can be solved by health-data requesters and collectors. We prove that the optimal task price is equal to the marginal utility generated by the collector's health data. To avoid obtaining the collector's private information, a distributed iterative algorithm is then designed to obtain the optimal taskmore »Free, publicly-accessible full text available May 11, 2023
-
Free, publicly-accessible full text available June 1, 2023
-
Free, publicly-accessible full text available April 1, 2023