skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Krause, Stefan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N2O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types,Sporobolus alterniflorus(= Spartina alterniflora) andSporobolus pumilus(= Spartina patens), using 24-h laboratory incubation experiments. Potential N2O fluxes increased from minor sinks to major sources following elevated treatments across all four marsh sites. One day of potential N2O emissions under elevated treatments (representing either long-term sea surface warming or short-term ocean heatwaves effects on coastal marsh soil temperatures alongside pulses of N loading) offset 15–60% of the potential annual ambient N2O sink, depending on marsh site and vegetation type. Rates of potential denitrification were generally higher in high latitude than in low latitude marsh soils under ambient treatments, with low ratios of N2O:N2indicating complete denitrification in high latitude marsh soils. Under elevated temperature and Nr treatments, potential denitrification was lower in high latitude soil but higher in low latitude soil as compared to ambient conditions, with incomplete denitrification observed except in LouisianaS. pumilus. Overall, our findings suggest that a combined increase in temperature and Nr has the potential to reduce salt marsh greenhouse gas (GHG) sinks under future global change scenarios.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. null (Ed.)
    Abstract. Groundwater table dynamics extensively modify the volume of the hyporheic zoneand the rate of hyporheic exchange processes. Understanding the effects ofdaily groundwater table fluctuations on the tightly coupled flow and heattransport within hyporheic zones is crucial for water resourcesmanagement. With this aim in mind, a physically based model is used to explorehyporheic responses to varying groundwater table fluctuationscenarios. The effects of different timing and amplitude of groundwater tabledaily drawdowns under gaining and losing conditions are explored in hyporheiczones influenced by natural flood events and diel river temperaturefluctuations. We find that both diel river temperature fluctuations and dailygroundwater table drawdowns play important roles in determining thespatiotemporal variability of hyporheic exchange rates, temperature ofexfiltrating hyporheic fluxes, mean residence times, and hyporheicdenitrification potentials. Groundwater table dynamics present substantiallydistinct impacts on hyporheic exchange under gaining or losing conditions. Thetiming of groundwater table drawdown has a direct influence on hyporheicexchange rates and hyporheic buffering capacity on thermaldisturbances. Consequently, the selection of aquifer pumping regimes hassignificant impacts on the dispersal of pollutants in the aquifer and thermalheterogeneity in the sediment. 
    more » « less
  3. null (Ed.)
  4. Abstract Water security requires not only sufficient availability of and access to safe and acceptable quality for domestic uses, but also fair distribution within and across populations. However, a key research gap remains in understanding water security inequality and its dynamics, which in turn creates an impediment to tracking progress towards sustainable development. Therefore, we analyse the inequality of water security using data from 7603 households across 28 sites in 22 low- and middle-income countries, measured using the Household Water Insecurity Experiences Scale. Here we show an inverted-U shaped relationship between site water security and inequality of household water security. This Kuznets-like curve suggests a process that as water security grows, the inequality of water security first increases then decreases. This research extends the Kuznets curve applications and introduces the Development Kuznets Curve concept. Its practical implications support building water security and achieving more fair, inclusive, and sustainable development. 
    more » « less
  5. null (Ed.)
    Disturbances fundamentally alter ecosystem functions, yet predicting their impacts remains a key scientific challenge. While the study of disturbances is ubiquitous across many ecological disciplines, there is no agreed-upon, cross-disciplinary foundation for discussing or quantifying the complexity of disturbances, and no consistent terminology or methodologies exist. This inconsistency presents an increasingly urgent challenge due to accelerating global change and the threat of interacting disturbances that can destabilize ecosystem responses. By harvesting the expertise of an interdisciplinary cohort of contributors spanning 42 institutions across 15 countries, we identified an essential limitation in disturbance ecology: the word ‘disturbance’ is used interchangeably to refer to both the events that cause, and the consequences of, ecological change, despite fundamental distinctions between the two meanings. In response, we developed a generalizable framework of ecosystem disturbances, providing a well-defined lexicon for understanding disturbances across perspectives and scales. The framework results from ideas that resonate across multiple scientific disciplines and provides a baseline standard to compare disturbances across fields. This framework can be supplemented by discipline-specific variables to provide maximum benefit to both inter- and intra-disciplinary research. To support future syntheses and meta-analyses of disturbance research, we also encourage researchers to be explicit in how they define disturbance drivers and impacts, and we recommend minimum reporting standards that are applicable regardless of scale. Finally, we discuss the primary factors we considered when developing a baseline framework and propose four future directions to advance our interdisciplinary understanding of disturbances and their social-ecological impacts: integrating across ecological scales, understanding disturbance interactions, establishing baselines and trajectories, and developing process-based models and ecological forecasting initiatives. Our experience through this process motivates us to encourage the wider scientific community to continue to explore new approaches for leveraging Open Science principles in generating creative and multidisciplinary ideas. 
    more » « less