skip to main content

Search for: All records

Creators/Authors contains: "Kulshreshth, Arun K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Educational VR may help students by being more engaging or improving retention compared to traditional learning methods. However, a student can get distracted in a VR environment due to stress, mind-wandering, unwanted noise, external alerts, etc. Student eye gaze can be useful for detecting these distraction. We explore deep-learning-based approaches to detect distractions from gaze data. We designed an educational VR environment and trained three deep learning models (CNN, LSTM, and CNN-LSTM) to gauge a student’s distraction level from gaze data, using both supervised and unsupervised learning methods. Our results show that supervised learning provided better test accuracy compared to unsupervised learning methods.
  2. Virtual Reality (VR) headsets with embedded eye trackers are appearing as consumer devices (e.g. HTC Vive Eye, FOVE). These devices could be used in VR-based education (e.g., a virtual lab, a virtual field trip) in which a live teacher guides a group of students. The eye tracking could enable better insights into students’ activities and behavior patterns. For real-time insight, a teacher’s VR environment can display student eye gaze. These visualizations would help identify students who are confused/distracted, and the teacher could better guide them to focus on important objects. We present six gaze visualization techniques for a VR-embedded teacher’s view, and we present a user study to compare these techniques. The results suggest that a short particle trail representing eye trajectory is promising. In contrast, 3D heatmaps (an adaptation of traditional 2D heatmaps) for visualizing gaze over a short time span are problematic.
  3. VR displays (HMDs) with embedded eye trackers could enable better teacher-guided VR applications since eye tracking could provide insights into student’s activities and behavior patterns. We present several techniques to visualize eye-gaze data of the students to help a teacher gauge student attention level. A teacher could then better guide students to focus on the object of interest in the VR environment if their attention drifts and they get distracted or confused.