skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumar, Jitendra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Timberline marks the transitions from continuous forests to sparse forests and tundra landscapes. As the spatial distribution and dynamics of timberline are closely associated with regional energy and carbon balance, mapping timberline is important to a wide range of environmental and ecological studies. However, current timberline delineation approaches remain under-developed. We proposed an automatic timberline delineation method based on a seeded region-growing segmentation technique and satellite-derived products of tree fractional cover. We applied our approach to the West Siberian Plain and Alaska treeline regions as defined by the Circumpolar Arctic Vegetation Map. The results demonstrate the effectiveness of the proposed method for the accurate delineation of the timberlines that spatially align well with very-high-resolution satellite images. Based on the delineated timberlines, we find regional-scale tree encroachment to be not as substantial as previously reported. The proposed approach can be applied to understanding climate-induced forest responses and inform forest management practices. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract Theaus(Oryza sativaL.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-morphological diversity and genetic control of yield traits inausrice remain poorly understood. To address this knowledge gap, we investigated the genetic structure of 181ausaccessions using 399,115 SNP markers and evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to identify key loci controlling yield and plant architectural traits. Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identifiedOsSAC1on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the importance ofOsGLT1and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 3,000 Rice Genome Panel revealed distinct genetic variations inausrice. In summary, this study offers valuable insights into the genetic structure and phenotypic diversity ofausrice accessions. We have identified significant loci associated with essential agronomic traits, withGLT1, PUP4, andSAC1genes emerging as key players in yield determination. 
    more » « less
  4. Chen, Jing M (Ed.)
    The Arctic is warming faster than anywhere else on Earth, placing tundra ecosystems at the forefront of global climate change. Plant biomass is a fundamental ecosystem attribute that is sensitive to changes in climate, closely tied to ecological function, and crucial for constraining ecosystem carbon dynamics. However, the amount, functional composition, and distribution of plant biomass are only coarsely quantified across the Arctic. Therefore, we developed the first moderate resolution (30 m) maps of live aboveground plant biomass (g m− 2) and woody plant dominance (%) for the Arctic tundra biome, including the mountainous Oro Arctic. We modeled biomass for the year 2020 using a new synthesis dataset of field biomass harvest measurements, Landsat satellite seasonal synthetic composites, ancillary geospatial data, and machine learning models. Additionally, we quantified pixel-wise uncertainty in biomass predictions using Monte Carlo simulations and validated the models using a robust, spatially blocked and nested cross-validation procedure. Observed plant and woody plant biomass values ranged from 0 to ~6000 g m− 2 (mean ≈350 g m− 2), while predicted values ranged from 0 to ~4000 g m− 2 (mean ≈275 g m− 2), resulting in model validation root-mean-squared-error (RMSE) ≈400 g m− 2 and R2 ≈ 0.6. Our maps not only capture large-scale patterns of plant biomass and woody plant dominance across the Arctic that are linked to climatic variation (e.g., thawing degree days), but also illustrate how fine-scale patterns are shaped by local surface hydrology, topography, and past disturbance. By providing data on plant biomass across Arctic tundra ecosystems at the highest resolution to date, our maps can significantly advance research and inform decision-making on topics ranging from Arctic vegetation monitoring and wildlife conservation to carbon accounting and land surface modeling 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  5. {"Abstract":["Data Description<\/strong>:<\/p>\n\nTo improve SOC estimation in the United States, we upscaled site-based SOC measurements to the continental scale using multivariate geographic clustering (MGC) approach coupled with machine learning models. First, we used the MGC approach to segment the United States at 30 arc second resolution based on principal component information from environmental covariates (gNATSGO soil properties, WorldClim bioclimatic variables, MODIS biological variables, and physiographic variables) to 20 SOC regions. We then trained separate random forest model ensembles for each of the SOC regions identified using environmental covariates and soil profile measurements from the International Soil Carbon Network (ISCN) and an Alaska soil profile data. We estimated United States SOC for 0-30 cm and 0-100 cm depths were 52.6 + 3.2 and 108.3 + 8.2 Pg C, respectively.<\/p>\n\nFiles in collection (32):<\/p>\n\nCollection contains 22 soil properties geospatial rasters, 4 soil SOC geospatial rasters, 2 ISCN site SOC observations csv files, and 4 R scripts<\/p>\n\ngNATSGO TIF files:<\/p>\n\n├── available_water_storage_30arc_30cm_us.tif                   [30 cm depth soil available water storage]\n├── available_water_storage_30arc_100cm_us.tif                 [100 cm depth soil available water storage]\n├── caco3_30arc_30cm_us.tif                                                 [30 cm depth soil CaCO3 content]\n├── caco3_30arc_100cm_us.tif                                               [100 cm depth soil CaCO3 content]\n├── cec_30arc_30cm_us.tif                                                     [30 cm depth soil cation exchange capacity]\n├── cec_30arc_100cm_us.tif                                                   [100 cm depth soil cation exchange capacity]\n├── clay_30arc_30cm_us.tif                                                     [30 cm depth soil clay content]\n├── clay_30arc_100cm_us.tif                                                   [100 cm depth soil clay content]\n├── depthWT_30arc_us.tif                                                        [depth to water table]\n├── kfactor_30arc_30cm_us.tif                                                 [30 cm depth soil erosion factor]\n├── kfactor_30arc_100cm_us.tif                                               [100 cm depth soil erosion factor]\n├── ph_30arc_100cm_us.tif                                                      [100 cm depth soil pH]\n├── ph_30arc_100cm_us.tif                                                      [30 cm depth soil pH]\n├── pondingFre_30arc_us.tif                                                     [ponding frequency]\n├── sand_30arc_30cm_us.tif                                                    [30 cm depth soil sand content]\n├── sand_30arc_100cm_us.tif                                                  [100 cm depth soil sand content]\n├── silt_30arc_30cm_us.tif                                                        [30 cm depth soil silt content]\n├── silt_30arc_100cm_us.tif                                                      [100 cm depth soil silt content]\n├── water_content_30arc_30cm_us.tif                                      [30 cm depth soil water content]\n└── water_content_30arc_100cm_us.tif                                   [100 cm depth soil water content]<\/p>\n\nSOC TIF files:<\/p>\n\n├──30cm SOC mean.tif                             [30 cm depth soil SOC]\n├──100cm SOC mean.tif                           [100 cm depth soil SOC]\n├──30cm SOC CV.tif                                 [30 cm depth soil SOC coefficient of variation]\n└──100cm SOC CV.tif                              [100 cm depth soil SOC coefficient of variation]<\/p>\n\nsite observations csv files:<\/p>\n\nISCN_rmNRCS_addNCSS_30cm.csv       30cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data<\/p>\n\nISCN_rmNRCS_addNCSS_100cm.csv       100cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data<\/p>\n\n\nData format<\/strong>:<\/p>\n\nGeospatial files are provided in Geotiff format in Lat/Lon WGS84 EPSG: 4326 projection at 30 arc second resolution.<\/p>\n\nGeospatial projection<\/strong>: <\/p>\n\nGEOGCS["GCS_WGS_1984",\n DATUM["D_WGS_1984",\n SPHEROID["WGS_1984",6378137,298.257223563]],\n PRIMEM["Greenwich",0],\n UNIT["Degree",0.017453292519943295]]\n(base) [jbk@theseus ltar_regionalization]$ g.proj -w\nGEOGCS["wgs84",\n DATUM["WGS_1984",\n SPHEROID["WGS_1984",6378137,298.257223563]],\n PRIMEM["Greenwich",0],\n UNIT["degree",0.0174532925199433]]\n<\/code>\n\n <\/p>"]} 
    more » « less
  6. Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  7. Abstract Estimates of soil organic carbon (SOC) stocks are essential for many environmental applications. However, significant inconsistencies exist in SOC stock estimates for the U.S. across current SOC maps. We propose a framework that combines unsupervised multivariate geographic clustering (MGC) and supervised Random Forests regression, improving SOC maps by capturing heterogeneous relationships with SOC drivers. We first used MGC to divide the U.S. into 20 SOC regions based on the similarity of covariates (soil biogeochemical, bioclimatic, biological, and physiographic variables). Subsequently, separate Random Forests models were trained for each SOC region, utilizing environmental covariates and SOC observations. Our estimated SOC stocks for the U.S. (52.6 ± 3.2 Pg for 0–30 cm and 108.3 ± 8.2 Pg for 0–100 cm depth) were within the range estimated by existing products like Harmonized World Soil Database, HWSD (46.7 Pg for 0–30 cm and 90.7 Pg for 0–100 cm depth) and SoilGrids 2.0 (45.7 Pg for 0–30 cm and 133.0 Pg for 0–100 cm depth). However, independent validation with soil profile data from the National Ecological Observatory Network showed that our approach (R2 = 0.51) outperformed the estimates obtained from Harmonized World Soil Database (R2 = 0.23) and SoilGrids 2.0 (R2 = 0.39) for the topsoil (0–30 cm). Uncertainty analysis (e.g., low representativeness and high coefficients of variation) identified regions requiring more measurements, such as Alaska and the deserts of the U.S. Southwest. Our approach effectively captures the heterogeneous relationships between widely available predictors and the current SOC baseline across regions, offering reliable SOC estimates at 1 km resolution for benchmarking Earth system models. 
    more » « less
  8. Abstract. Large changes in the Arctic carbon balance are expectedas warming linked to climate change threatens to destabilize ancientpermafrost carbon stocks. The eddy covariance (EC) method is an establishedtechnique to quantify net losses and gains of carbon between the biosphereand atmosphere at high spatiotemporal resolution. Over the past decades, agrowing network of terrestrial EC tower sites has been established acrossthe Arctic, but a comprehensive assessment of the network'srepresentativeness within the heterogeneous Arctic region is still lacking.This creates additional uncertainties when integrating flux data acrosssites, for example when upscaling fluxes to constrain pan-Arctic carbonbudgets and changes therein. This study provides an inventory of Arctic (here > = 60∘ N)EC sites, which has also been made available online(https://cosima.nceas.ucsb.edu/carbon-flux-sites/, last access: 25 January 2022). Our database currentlycomprises 120 EC sites, but only 83 are listed as active, and just 25 ofthese active sites remain operational throughout the winter. To map therepresentativeness of this EC network, we evaluated the similarity betweenenvironmental conditions observed at the tower locations and those withinthe larger Arctic study domain based on 18 bioclimatic and edaphicvariables. This allows us to assess a general level of similarity betweenecosystem conditions within the domain, while not necessarily reflectingchanges in greenhouse gas flux rates directly. We define two metrics basedon this representativeness score: one that measures whether a location isrepresented by an EC tower with similar characteristics (ER1) and a secondfor which we assess if a minimum level of representation for statisticallyrigorous extrapolation is met (ER4). We find that while half of the domainis represented by at least one tower, only a third has enough towers insimilar locations to allow reliable extrapolation. When we consider methanemeasurements or year-round (including wintertime) measurements, the valuesdrop to about 1/5 and 1/10 of the domain, respectively. With themajority of sites located in Fennoscandia and Alaska, these regions wereassigned the highest level of network representativeness, while large partsof Siberia and patches of Canada were classified as underrepresented.Across the Arctic, mountainous regions were particularly poorly representedby the current EC observation network. We tested three different strategies to identify new site locations orupgrades of existing sites that optimally enhance the representativeness ofthe current EC network. While 15 new sites can improve therepresentativeness of the pan-Arctic network by 20 %, upgrading as fewas 10 existing sites to capture methane fluxes or remain active duringwintertime can improve their respective ER1 network coverage by 28 % to 33 %. This targeted network improvement could be shown to be clearlysuperior to an unguided selection of new sites, therefore leading tosubstantial improvements in network coverage based on relatively smallinvestments. 
    more » « less
  9. Nature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem-scale carbon fluxes, e.g., by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state-of-the-art remote sensing products and land-surface models are not yet being widely used to inform NbCS policy making or implementation. As a result, there is a critical mismatch between the point- and tree- scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policy making. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem-scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre-existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach. 
    more » « less