skip to main content

Search for: All records

Creators/Authors contains: "Ladwig, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lake trophic state is a key ecosystem property that integrates a lake’s physical, chemical, and biological processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and analyze lake trophic state with reproducible, robust methods across time and space. We used Landsat surface reflectance data to create the first compendium of annual lake trophic state for 55,662 lakes of at least 10 ha in area throughout the contiguous United States from 1984 through 2020. The dataset was constructed with FAIR data principles (Findable, Accessible, Interoperable, and Reproducible) in mind, where data are publicly available, relational keys from parent datasets are retained, and all data wrangling and modeling routines are scripted for future reuse. Together, this resource offers critical data to address basic and applied research questions about lake water quality at a suite of spatial and temporal scales.

    more » « less
  2. Abstract. Hypolimnetic oxygen depletion during summer stratification in lakes can lead to hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many consequences, including reduced habitat for cold-water fish species, reduced quality of drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both allochthonous and autochthonous OC loads contribute to oxygen depletion by providing substrate for microbial respiration; however, their relative contributions to oxygen depletion across diverse lake systems remain uncertain. Lake characteristics, such as trophic state, hydrology, and morphometry, are also influential in carbon-cycling processes and may impact oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic oxygen depletion, we used a two-layer process-based lake model to simulate daily metabolism dynamics for six Wisconsin lakes over 20 years (1995–2014). Physical processes and internal metabolic processes were included in the model and were used to predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC respiration in the water column contributed the most towards hypolimnetic oxygen depletion in the eutrophic study lakes. POC water column respiration and sediment respiration had similar contributions in the mesotrophic and oligotrophic study lakes. Differences in terms of source of respiration are discussed with consideration of lake productivity and the processing and fates of organic carbon loads.

    more » « less
  3. This repository includes the setup and output from the analysis ran on Lake Mendota to explore the trophic cascade caused by invasion of spiny water flea in 2010. Scripts to run the model are located under /src, and the processed results for the discussion of the paper are located under /data_processed.

    more » « less
  4. Abstract

    Species invasions can disrupt aquatic ecosystems by re‐wiring food webs. A trophic cascade triggered by the invasion of the predatory zooplankter spiny water flea (Bythotrephes cederströmii) resulted in increased phytoplankton due to decreased zooplankton grazing. Here, we show that increased phytoplankton biomass led to an increase in lake anoxia. The temporal and spatial extent of anoxia experienced a step change increase coincident with the invasion, and anoxic factor increased by 11 d. Post‐invasion, anoxia established more quickly following spring stratification, driven by an increase in phytoplankton biomass. A shift in spring phytoplankton phenology encompassed both abundance and community composition. Diatoms (Bacillaryophyta) drove the increase in spring phytoplankton biomass, but not all phytoplankton community members increased, shifting the community composition. We infer that increased phytoplankton biomass increased labile organic matter and drove hypolimnetic oxygen consumption. These results demonstrate how a species invasion can shift lake phenology and biogeochemistry.

    more » « less
  5. Abstract Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical one-dimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions. 
    more » « less
  6. Anthropogenic freshwater salinization affects thousands of lakes worldwide, and yet little is known about how salt loading may shift timing of lake stratification and spring mixing in dimictic lakes. Here, we investigate the impact of salinization on mixing in Lakes Mendota and Monona, Wisconsin, by deploying under-ice buoys to record salinity gradients, using an analytical approach to quantify salinity thresholds that prevent spring mixing, and running an ensemble of vertical one-dimensional hydrodynamic lake models (GLM, GOTM, and Simstrat) to investigate the long-term impact of winter salt loading on mixing and stratification. We found that spring salinity gradients between surface and bottom waters persist up to a month after ice-off, and that theory predicts a salinity gradient of 1.3–1.4 g kg-1 would prevent spring mixing. Numerical models project that salt loading delays spring mixing and increases water column stability, with ramifications for oxygenation of bottom waters, biogeochemistry, and lake habitability. 
    more » « less