skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lakshmi, Venkataraman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Economic damages of hurricanes and tropical cyclones are increasing faster than the populations and wealth of many coastal areas. There is urgency to update priorities of agencies engaged with risk assessment, risk mitigation, and risk communication across hundreds or thousands of water basins. This paper evaluates hydrology and social vulnerability factors to develop a risk register at a subbasin scale for which the priorities of agencies vary by storm scenario using publicly available satellite-based Earth observations. The novelty and innovation of this approach is the quantification and mapping of risk as a disruption of system order, while using social vulnerability indices and sensor data from disparate sources. The results assist with allocating resources across basins under several scenarios of hydrology and social vulnerability. The approach is in several parts as follows: first, a baseline order of basins is defined using the CDC/ATSDR social vulnerability index (SVI). Next, a set of storm scenarios is defined using Earth Observations and modeled data. Next, a swing-weight technique is used to update factor weights under each scenario. Lastly, the importance order of basins relative to the baseline order is used to compare the risk of scenarios across the study area. The risk is thus quantified (by least squares difference of order) as a disruption to the ordering of basins by social and hydrologic factors (i.e., SVI, precipitation, wind speed, and soil moisture), with attention to the most disruptive scenarios. An application is described with extensive mapping of hydrologic basins for Hurricane Ian to demonstrate a versatile method to address uncertainty of scenarios of storm nature and extent across coastal mega-regions. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  3. Free, publicly-accessible full text available November 1, 2025
  4. Free, publicly-accessible full text available July 1, 2025
  5. Permafrost in High Mountain Asia (HMA) is becoming increasingly vulnerable to thaw due to climate change. However, the lack of either in situ ground surface or borehole temperature data beyond the Tibetan Plateau prevents comprehensive assessments of its impact on the regional hydrologic cycle and local cascading hazards. Although past studies have generated estimates of permafrost extent in Central Asia, many are limited to the Tibetan Plateau, excluding the more remote reaches of the Tien Shan, Pamirs, and Himalayas. By leveraging surface temperatures from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infra-Red Sounder (AIRS), this study advances further understanding of remotely sensed permafrost occurrence at high altitudes, which are prone to error due to frequent cloud cover. We demonstrate that the fusion of MODIS and AIRS products can accurately estimate long-term thermal regimes of the subsurface, with reported correlation coefficients of 0.773 and 0.560, RMSEs of 0.890 °C and 0.680 °C, and biases of 0.003 °C and 0.462 °C, respectively, for the ground surface and the depth of zero annual amplitude, during a reference period of 2003–2016. Furthermore, we provide a range of possible permafrost extents based on established equations for calculating the temperature at the top of the permafrost to demonstrate temperature sensitivity to soil moisture and snow cover. The MODIS-AIRS product is recommended to be a robust source of ground temperature estimates, which may be sufficient for inferring mountain permafrost presence in HMA. Incorporating the influence of soil moisture and snow depth, although limited by biased estimates, also produces estimates of permafrost regional areas comparable to previously reported permafrost indices. A total permafrost area of 1.69 (± 0.32) million km2 is estimated for the entire HMA, across 15 mountain subregions. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  6. The La Plata River Basin (LPRB) is an area of interest, as there was a significant drought event from 2019 to 2021. With the LPRB being the second largest river basin in South America, this drought affected all aspects of life for over 100 million people who inhabit this area. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  7. Abstract The Mekong River basin (MRB) is a transboundary basin that supports livelihoods of over 70 million inhabitants and diverse terrestrial-aquatic ecosystems. This critical lifeline for people and ecosystems is under transformation due to climatic stressors and human activities (e.g., land use change and dam construction). Thus, there is an urgent need to better understand the changing hydrological and ecological systems in the MRB and develop improved adaptation strategies. This, however, is hampered partly by lack of sufficient, reliable, and accessible observational data across the basin. Here, we fill this long-standing gap for MRB by synthesizing climate, hydrological, ecological, and socioeconomic data from various disparate sources. The data— including groundwater records digitized from the literature—provide crucial insights into surface water systems, groundwater dynamics, land use patterns, and socioeconomic changes. The analyses presented also shed light on uncertainties associated with various datasets and the most appropriate choices. These datasets are expected to advance socio-hydrological research and inform science-based management decisions and policymaking for sustainable food-energy-water, livelihood, and ecological systems in the MRB. 
    more » « less
  8. Droughts are projected to increase in intensity and frequency with the rise of global mean temperatures. However, not all drought indices equally capture the variety of influences that each hydrologic component has on the duration and magnitude of a period of water deficit. While such indices often agree with one another due to precipitation being the major input, heterogeneous responses caused by groundwater recharge, soil moisture memory, and vegetation dynamics may lead to a decoupling of identifiable drought conditions. As a semi-arid basin, the Limpopo River Basin (LRB) is a severely water-stressed region associated with unique climate patterns that regularly affect hydrological extremes. In this study, we find that vegetation indices show no significant long-term trends (S-statistic 9; p-value 0.779), opposing that of the modeled groundwater anomalies (S-statistic -57; p-value 0.05) in the growing season for a period of 18 years (2004–2022). Although the Mann-Kendall time series statistics for NDVI and drought indices are non-significant when basin-averaged, spatial heterogeneity further reveals that such a decoupling trend between vegetation and groundwater anomalies is indeed significant (p-value < 0.05) in colluvial, low-land aquifers to the southeast, while they remain more coupled in the central-west LRB, where more bedrock aquifers dominate. The conclusions of this study highlight the importance of ecological conditions with respect to water availability and suggest that water management must be informed by local vegetation species, especially in the face of depleting groundwater resources.

     
    more » « less
  9. Various climate, hydro-meteorological, ecological, and socio-economic datasets are synthesized and made available for the Mekong River Basin. The sources of each dataset are also mentioned in the associated readme file. Dam attribute data, inundation data, and Cambodia census data can be made available upon request to the authors. 
    more » « less