skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Risk Comparison of Hurricane Scenarios as Disruptions of Hydrologic Basin Order with Social Vulnerability Criteria
Economic damages of hurricanes and tropical cyclones are increasing faster than the populations and wealth of many coastal areas. There is urgency to update priorities of agencies engaged with risk assessment, risk mitigation, and risk communication across hundreds or thousands of water basins. This paper evaluates hydrology and social vulnerability factors to develop a risk register at a subbasin scale for which the priorities of agencies vary by storm scenario using publicly available satellite-based Earth observations. The novelty and innovation of this approach is the quantification and mapping of risk as a disruption of system order, while using social vulnerability indices and sensor data from disparate sources. The results assist with allocating resources across basins under several scenarios of hydrology and social vulnerability. The approach is in several parts as follows: first, a baseline order of basins is defined using the CDC/ATSDR social vulnerability index (SVI). Next, a set of storm scenarios is defined using Earth Observations and modeled data. Next, a swing-weight technique is used to update factor weights under each scenario. Lastly, the importance order of basins relative to the baseline order is used to compare the risk of scenarios across the study area. The risk is thus quantified (by least squares difference of order) as a disruption to the ordering of basins by social and hydrologic factors (i.e., SVI, precipitation, wind speed, and soil moisture), with attention to the most disruptive scenarios. An application is described with extensive mapping of hydrologic basins for Hurricane Ian to demonstrate a versatile method to address uncertainty of scenarios of storm nature and extent across coastal mega-regions.  more » « less
Award ID(s):
1829004
PAR ID:
10548257
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASCE
Date Published:
Journal Name:
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume:
10
Issue:
3
ISSN:
2376-7642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social vulnerability refers to how social positions affect the ability to access resources during a disaster or disturbance, but there is limited empirical examination of its spatial patterns in the Great Lakes Basin (GLB) region of North America. In this study, we map four themes of social vulnerability for the GLB by using the Center for Disease Control’s Social Vulnerability Index (CDC SVI) for every county in the basin and compare mean scores for each sub-basin to assess inter-basin differences. Additionally, we map LISA results to identify clusters of high and low social vulnerability along with the outliers across the region. Results show the spatial patterns depend on the social vulnerability theme selected, with some overlapping clusters of high vulnerability existing in Northern and Central Michigan, and clusters of low vulnerability in Eastern Wisconsin along with outliers across the basins. Differences in these patterns also indicate the existence of an urban–rural dimension to the variance in social vulnerabilities measured in this study. Understanding regional patterns of social vulnerability help identify the most vulnerable people, and this paper presents a framework for policymakers and researchers to address the unique social vulnerabilities across heterogeneous regions. 
    more » « less
  2. Critical infrastructure networks, including water, power, communication, and transportation, among others, are necessary to society’s functionality. In recent years, the threat of different types of disruptions to such infrastructure networks has become an increasingly important problem to address. Due to existing interdependencies, damage to a small area of one of the networks could have far-reaching effects on the ability to meet demand across the entire system. Common disruption scenarios include, among others, intentional malevolent attacks, natural disasters, and random failures. Similar works have focused on only one type of scenario, but combining a variety of disruptions may lead to more realistic results. Additionally, the concept of social vulnerability, which describes an area’s ability to prepare for and respond to a disruption, must be included. This should promote not only the protection of the most at-risk components but also ensure that socially vulnerable communities are given adequate resources. This work provides a decision making framework to determine the allocation of defensive resources that accounts for all these factors. Accordingly, we propose a multi-objective mathematical model with the objectives of: (i) minimizing the vulnerability of a system of interdependent infrastructure networks, and (ii) minimizing the total cost of the resource allocation strategy. Moreover, to account for uncertainty in the proposed model, this paper incorporates a means to address robustness in finding the most adaptable network protection plan to reduce the vulnerability of the system of interdependent networks to a variety of disruption scenarios. The proposed work is illustrated with an application to social vulnerability and interdependent power, gas, and water networks in Shelby County, Tennessee. 
    more » « less
  3. Hydroclimate and terrestrial hydrology greatly influence the local communities, ecosystems, and economies across Alaska and Yukon River Basin. Therefore, we utilized the Regional Arctic Systems Model (RASM) to model the coupled land-atmosphere, and generated a climate and hydrology dataset at 4-km grid spacing to improve our understanding of the regional hydroclimate and terrestrial hydrology. Our model domain encompasses all of the U.S. State of Alaska, the entire Yukon River Basin, part of Western Canada, and the eastern coastal region of Russia. This dataset includes 1) one simulation of the historical climate (Water Years 1991-2021), which serves as a benchmark for climate change studies, and 2) two future simulations (Equivalent Water Years 2035-2065) using the Pseudo-Global Warming method under future greenhouse gas emission scenario SSP2-4.5. The two future scenarios represent median and high changes derived from ensemble means across different Global Climate Models in the Coupled Model Intercomparison Project Phase 6 within SSP2-4.5 respectively. The microphysics schemes in the Weather Research and Forecast (WRF) atmospheric model were manually tuned for optimal model performance. The land component in RASM was replaced using the Community Terrestrial Systems Model (CTSM) given its comprehensive process representations for cold regions. We conducted optimization for uncoupled CTSM to improve its performance in terrestrial hydrologic simulations, especially streamflow and snow (Cheng et al., 2023). In order to maintain the quality for both hydroclimate and terrestrial hydrologic simulation, we implemented a strategy of iterative testing and re-optimization of CTSM. This dataset was then generated using RASM with optimized CTSM parameters and manually tuned WRF microphysics. The historical simulation was evaluated against multiple observational datasets for five key weather variables and hydrologic fluxes, including precipitation, air temperature, snow fraction, evaporation-to-precipitation ratios, and streamflow. The evaluation details can be found in Cheng et al. (2024). 
    more » « less
  4. Abstract Tropical cyclone (TC) hazards coupled with dense urban development along the coastline have resulted in trillions in US damages over the past several decades, with an increasing trend in losses in recent years. So far, this trend has been driven by increasing coastal development. However, as the climate continues to warm, changing TC climatology may also cause large changes in coastal damages in the future. Approaches to quantifying regional TC risk typically focus on total storm damage. However, it is crucial to understand the spatial footprint of TC damage and ultimately the spatial distribution of TC risk. Here, we quantify the magnitude and spatial pattern of TC risk (in expected annual damage) across the US from wind, storm surge, and rainfall using synthetic TCs, physics-based hazard models, and a county-level statistical damage model trained on historical TC data. We then combine end-of-century TC hazard simulations with US population growth and wealth increase scenarios (under the SSP2 4.5 emission scenario) to investigate the sensitivity of changes in TC risk across the US Atlantic and Gulf coasts. We find that not directly accounting for the effects of rainfall and storm surge results in much lower risk estimates and smaller future increases in risk. TC climatology change and socioeconomic change drive similar magnitude increases in total expected annual damage across the US (roughly 160%), and that their combined effect (633% increase) is much higher. 
    more » « less
  5. Adnan, Mohammed_Sarfaraz Gani (Ed.)
    Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond. 
    more » « less