Social vulnerability refers to how social positions affect the ability to access resources during a disaster or disturbance, but there is limited empirical examination of its spatial patterns in the Great Lakes Basin (GLB) region of North America. In this study, we map four themes of social vulnerability for the GLB by using the Center for Disease Control’s Social Vulnerability Index (CDC SVI) for every county in the basin and compare mean scores for each sub-basin to assess inter-basin differences. Additionally, we map LISA results to identify clusters of high and low social vulnerability along with the outliers across the region. Results show the spatial patterns depend on the social vulnerability theme selected, with some overlapping clusters of high vulnerability existing in Northern and Central Michigan, and clusters of low vulnerability in Eastern Wisconsin along with outliers across the basins. Differences in these patterns also indicate the existence of an urban–rural dimension to the variance in social vulnerabilities measured in this study. Understanding regional patterns of social vulnerability help identify the most vulnerable people, and this paper presents a framework for policymakers and researchers to address the unique social vulnerabilities across heterogeneous regions.
more »
« less
This content will become publicly available on September 1, 2025
Risk Comparison of Hurricane Scenarios as Disruptions of Hydrologic Basin Order with Social Vulnerability Criteria
Economic damages of hurricanes and tropical cyclones are increasing faster than the populations and wealth of many coastal areas. There is urgency to update priorities of agencies engaged with risk assessment, risk mitigation, and risk communication across hundreds or thousands of water basins. This paper evaluates hydrology and social vulnerability factors to develop a risk register at a subbasin scale for which the priorities of agencies vary by storm scenario using publicly available satellite-based Earth observations. The novelty and innovation of this approach is the quantification and mapping of risk as a disruption of system order, while using social vulnerability indices and sensor data from disparate sources. The results assist with allocating resources across basins under several scenarios of hydrology and social vulnerability. The approach is in several parts as follows: first, a baseline order of basins is defined using the CDC/ATSDR social vulnerability index (SVI). Next, a set of storm scenarios is defined using Earth Observations and modeled data. Next, a swing-weight technique is used to update factor weights under each scenario. Lastly, the importance order of basins relative to the baseline order is used to compare the risk of scenarios across the study area. The risk is thus quantified (by least squares difference of order) as a disruption to the ordering of basins by social and hydrologic factors (i.e., SVI, precipitation, wind speed, and soil moisture), with attention to the most disruptive scenarios. An application is described with extensive mapping of hydrologic basins for Hurricane Ian to demonstrate a versatile method to address uncertainty of scenarios of storm nature and extent across coastal mega-regions.
more »
« less
- Award ID(s):
- 1829004
- PAR ID:
- 10548257
- Publisher / Repository:
- ASCE
- Date Published:
- Journal Name:
- ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2376-7642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Critical infrastructure networks, including water, power, communication, and transportation, among others, are necessary to society’s functionality. In recent years, the threat of different types of disruptions to such infrastructure networks has become an increasingly important problem to address. Due to existing interdependencies, damage to a small area of one of the networks could have far-reaching effects on the ability to meet demand across the entire system. Common disruption scenarios include, among others, intentional malevolent attacks, natural disasters, and random failures. Similar works have focused on only one type of scenario, but combining a variety of disruptions may lead to more realistic results. Additionally, the concept of social vulnerability, which describes an area’s ability to prepare for and respond to a disruption, must be included. This should promote not only the protection of the most at-risk components but also ensure that socially vulnerable communities are given adequate resources. This work provides a decision making framework to determine the allocation of defensive resources that accounts for all these factors. Accordingly, we propose a multi-objective mathematical model with the objectives of: (i) minimizing the vulnerability of a system of interdependent infrastructure networks, and (ii) minimizing the total cost of the resource allocation strategy. Moreover, to account for uncertainty in the proposed model, this paper incorporates a means to address robustness in finding the most adaptable network protection plan to reduce the vulnerability of the system of interdependent networks to a variety of disruption scenarios. The proposed work is illustrated with an application to social vulnerability and interdependent power, gas, and water networks in Shelby County, Tennessee.more » « less
-
Adnan, Mohammed_Sarfaraz Gani (Ed.)Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond.more » « less
-
Strong hurricane winds often cause severe infrastructure damage and pose social and economic consequences in coastal communities. In the context of community resilience planning, estimating such impacts can facilitate developing more risk-informed mitigation plans in the community of interest. This study presents a new framework for synthetically simulating scenario-hurricane winds using a parametric wind field model for predicting community-level building damage, direct economic loss, and social consequences. The proposed synthetic scenario approach uses historical hurricane data and adjusts its original trajectory to create synthetic change scenarios and estimates peak gust wind speed at the location of each building. In this research, a stochastic damage simulation algorithm is applied to assess the buildings’ physical damage. The algorithm assigns a damage level to each building using the corresponding damage-based fragility functions, predicted maximum gust speed at the building’s location, and a randomly generated number. The monetary loss to the building inventory due to its physical damage is determined using FEMA’s direct loss ratios and buildings’ replacement costs considering uncertainty. To assess the social impacts of the physical damage exposure, three likely post-disaster social disruptions are measured, including household dislocation, employment disruption, and school closures. The framework is demonstrated by its application to the hurricane-prone community of Onslow County, North Carolina. The novel contribution of the developed framework, aside from the introduced approach for spatial predicting hurricane-induced wind hazards, is its ability to illuminate some aspects of the social consequences of substantial physical damages to the building inventory in a coastal community due to the hurricane-induced winds. These advancements enable community planners and decision-makers to make more risk-informed decisions for improving coastal community resilience.more » « less
-
Abstract Low‐elevation coastal areas are increasingly vulnerable to seawater flooding as sea levels rise and the frequency and intensity of large storms increase with climate change. Seawater flooding can lead to the salinization of fresh coastal aquifers by vertical saltwater intrusion (SWI). Vertical SWI is often overlooked in coastal zone threat assessments despite the risk it poses to critical freshwater resources and salt‐intolerant ecosystems that sustain coastal populations. This review synthesizes field and modeling approaches for investigating vertical SWI and the practical and theoretical understanding of salinization and flushing processes obtained from prior studies. The synthesis explores complex vertical SWI dynamics that are influenced by density‐dependent flow and oceanic, hydrologic, geologic, climatic, and anthropogenic forcings acting on coastal aquifers across spatial and temporal scales. Key knowledge gaps, management challenges, and research opportunities are identified to help advance our understanding of the vulnerability of fresh coastal groundwater. Past modeling studies often focus on idealized aquifer systems, and thus future work could consider more diverse geologic, climatic, and topographic environments. Concurrent field and modeling programs should be sustained over time to capture interactions between physical processes, repeated salinization and flushing events, and delayed aquifer responses. Finally, this review highlights the need for improved coordination and knowledge translation across disciplines (e.g., coastal engineering, hydrogeology, oceanography, social science) to gain a more holistic understanding of vertical SWI. There also needs to be more education of communities, policy makers, and managers to motivate societal action to address coastal groundwater vulnerability in a changing climate.more » « less