We explore correlations between the orientations of small galaxy groups, or ‘multiplets’, and the large-scale gravitational tidal field. Using data from the Dark Energy Spectroscopic Instrument (DESI) Y1 survey, we detect the intrinsic alignment (IA) of multiplets to the galaxy-traced matter field out to separations of $100\,h^{-1}$ Mpc. Unlike traditional IA measurements of individual galaxies, this estimator is not limited by imaging of galaxy shapes and allows for direct IA detection beyond redshift $z=1$. Multiplet alignment is a form of higher order clustering, for which the scale-dependence traces the underlying tidal field and amplitude is a result of small-scale ($\lt 1h^{-1}$ Mpc) dynamics. Within samples of bright galaxies, luminous red galaxies (LRG) and emission-line galaxies, we find similar scale-dependence regardless of intrinsic luminosity or colour. This is promising for measuring tidal alignment in galaxy samples that typically display no IA. DESI’s LRG mock galaxy catalogues created from the A bacusS ummitN-body simulations produce a similar alignment signal, though with a 33 per cent lower amplitude at all scales. An analytic model using a non-linear power spectrum (NLA) only matches the signal down to 20 $h^{-1}$ Mpc. Our detection demonstrates that galaxy clustering in the non-linear regime of structure formation preserves an interpretable memory of the large-scale tidal field. Multiplet alignment complements traditional two-point measurements by retaining directional information imprinted by tidal forces, and contains additional line-of-sight information compared to weak lensing. This is a more effective estimator than the alignment of individual galaxies in dense, blue, or faint galaxy samples.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT Accurate quasar classifications and redshift measurements are increasingly important to precision cosmology experiments. Broad absorption line (BAL) features are present in 15–20 per cent of all quasars, and these features can introduce systematic redshift errors, and in extreme cases produce misclassifications. We quantitatively investigate the impact of BAL features on quasar classifications and redshift measurements with synthetic spectra that were designed to match observations by the Dark Energy Spectroscopic Instrument (DESI) survey. Over the course of 5 yr, DESI aims to measure spectra for 40 million galaxies and quasars, including nearly three million quasars. Our synthetic quasar spectra match the signal-to-noise ratio and redshift distributions of the first year of DESI observations, and include the same synthetic quasar spectra both with and without BAL features. We demonstrate that masking the locations of the BAL features decreases the redshift errors by about 1 per cent and reduces the number of catastrophic redshift errors by about 80 per cent. We conclude that identifying and masking BAL troughs should be a standard part of the redshift determination step for DESI and other large-scale spectroscopic surveys of quasars.
-
ABSTRACT We present a simple, differentiable method for predicting emission line strengths from rest-frame optical continua using an empirically determined mapping. Extensive work has been done to develop mock galaxy catalogues that include robust predictions for galaxy photometry, but reliably predicting the strengths of emission lines has remained challenging. Our new mapping is a simple neural network implemented using the JAX Python automatic differentiation library. It is trained on Dark Energy Spectroscopic Instrument Early Release data to predict the equivalent widths (EWs) of the eight brightest optical emission lines (including H α, H β, [O ii], and [O iii]) from a galaxy’s rest-frame optical continuum. The predicted EW distributions are consistent with the observed ones when noise is accounted for, and we find Spearman’s rank correlation coefficient ρs > 0.87 between predictions and observations for most lines. Using a non-linear dimensionality reduction technique, we show that this is true for galaxies across the full range of observed spectral energy distributions. In addition, we find that adding measurement uncertainties to the predicted line strengths is essential for reproducing the distribution of observed line-ratios in the BPT diagram. Our trained network can easily be incorporated into a differentiable stellar population synthesis pipeline without hindering differentiability or scalability with GPUs. A synthetic catalogue generated with such a pipeline can be used to characterize and account for biases in the spectroscopic training sets used for training and calibration of photo-z’s, improving the modelling of systematic incompleteness for the Rubin Observatory LSST and other surveys.
-
ABSTRACT We present the first comprehensive halo occupation distribution (HOD) analysis of the Dark Energy Spectroscopic Instrument (DESI) One-Percent Survey luminous red galaxy (LRG) and Quasi Stellar Object (QSO) samples. We constrain the HOD of each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r < 32 h−1 Mpc in a set of fiducial redshift bins. We use AbacusSummit cubic boxes at Planck 2018 cosmology as model templates and forward model galaxy clustering with the AbacusHOD package. We achieve good fits with a standard HOD model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of $f_\mathrm{sat} = 11\pm 1~{y{\ \mathrm{per\,cent}}}$, a mean halo mass of $\log _{10}\overline{M}_h/M_\odot =13.40^{+0.02}_{-0.02}$, and a linear bias of $b_\mathrm{lin} = 1.93_{-0.04}^{+0.06}$. For LRGs in 0.6 < z < 0.8, we find $f_\mathrm{sat}=14\pm 1~{{\ \mathrm{per\,cent}}}$, $\log _{10}\overline{M}_h/M_\odot =13.24^{+0.02}_{-0.02}$, and $b_\mathrm{lin}=2.08_{-0.03}^{+0.03}$. For QSOs, we infer $f_\mathrm{sat}=3^{+8}_{-2}\mathrm{per\,cent}$, $\log _{10}\overline{M}_h/M_\odot = 12.65^{+0.09}_{-0.04}$, and $b_\mathrm{lin} = 2.63_{-0.26}^{+0.37}$ in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high fidelity galaxy mocks, forming the basis of systematic tests for DESI Y1 cosmological analyses. We also study the redshift-evolution of the DESI LRG sample from z = 0.4 up to z = 1.1, revealling significant and interesting trends in mean halo mass, linear bias, and satellite fraction.
-
Abstract The Dark Energy Spectroscopic Instrument (DESI) is currently measuring the spectra of 40 million galaxies and quasars, the largest such survey ever made to probe the nature of cosmological dark energy. The 4 m Mayall telescope at Kitt Peak National Observatory has been adapted for DESI, including the construction of a 3.°2 diameter prime focus corrector that focuses astronomical light onto a 0.8 m diameter focal surface with excellent image quality over the DESI bandpass of 360–980 nm. The wide-field corrector includes six lenses, as large as 1.1 m in diameter and as heavy as 237 kilograms, including two counterrotating wedged lenses that correct for atmospheric dispersion over zenith angles from 0° to 60°. The lenses, cells, and barrel assembly all meet precise alignment tolerances on the order of tens of microns. The barrel alignment is maintained throughout a range of observing angles and temperature excursions in the Mayall dome by use of a hexapod, which is itself supported by a new cage, ring, and truss structure. In this paper we describe the design, fabrication, and performance of the new corrector and associated structure, focusing on how they meet DESI requirements. In particular, we describe the prescription and specifications of the lenses, design choices and error budgeting of the barrel assembly, stray light mitigations, and integration and test at the Mayall telescope. We conclude with some validation highlights that demonstrate the successful corrector on-sky performance, and we list some lessons learned during the multiyear fabrication phase.
-
Abstract We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) from
z = 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package,galtab , which enables the rapid, precise prediction of CiC for any HOD model available inhalotools . This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies inz ∼ 0.15 samples with limiting absolute magnitudeM r < −20.0 andM r < −20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighterM r < −21.0 sample atz ∼ 0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold atz ∼ 0.15. We provide our constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3. -
ABSTRACT Galaxy–galaxy lensing (GGL) and clustering measurements from the Dark Energy Spectroscopic Instrument Year 1 (DESI Y1) data set promise to yield unprecedented combined-probe tests of cosmology and the galaxy–halo connection. In such analyses, it is essential to identify and characterize all relevant statistical and systematic errors. We forecast the covariances of DESI Y1 GGL + clustering measurements and the systematic bias due to redshift evolution in the lens samples. Focusing on the projected clustering and GGL correlations, we compute a Gaussian analytical covariance, using a suite of N-body and lognormal simulations to characterize the effect of the survey footprint. Using the DESI one percent survey data, we measure the evolution of galaxy bias parameters for the DESI luminous red galaxy (LRG) and bright galaxy survey (BGS) samples. We find mild evolution in the LRGs in $0.4 < z < 0.8$, subdominant to the expected statistical errors. For BGS, we find less evolution for brighter absolute magnitude cuts, at the cost of reduced sample size. We find that for a redshift bin width $\Delta z = 0.1$, evolution effects on DESI Y1 GGL is negligible across all scales, all fiducial selection cuts, all fiducial redshift bins. Galaxy clustering is more sensitive to evolution due to the bias squared scaling. Nevertheless the redshift evolution effect is insignificant for clustering above the 1-halo scale of $0.1h^{-1}$ Mpc. For studies that wish to reliably access smaller scales, additional treatment of redshift evolution is likely needed. This study serves as a reference for GGL and clustering studies using the DESI Y1 sample.
-
ABSTRACT We measure the tidal alignment of the major axes of luminous red galaxies (LRGs) from the Legacy Imaging Survey and use it to infer the artificial redshift-space distortion signature that will arise from an orientation-dependent, surface-brightness selection in the Dark Energy Spectroscopic Instrument (DESI) survey. Using photometric redshifts to downweight the shape–density correlations due to weak lensing, we measure the intrinsic tidal alignment of LRGs. Separately, we estimate the net polarization of LRG orientations from DESI’s fibre-magnitude target selection to be of order 10−2 along the line of sight. Using these measurements and a linear tidal model, we forecast a 0.5 per cent fractional decrease on the quadrupole of the two-point correlation function for projected separations of 40–80 h−1 Mpc. We also use a halo catalogue from the Abacussummit cosmological simulation suite to reproduce this false quadrupole.
-
Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is an untargeted spectroscopic survey that aims to measure the expansion rate of the universe at z ∼ 2.4 to 1% precision for both H ( z ) and D A ( z ). HETDEX is in the process of mapping in excess of one million Ly α emitting (LAE) galaxies and a similar number of lower- z galaxies as a tracer of the large-scale structure. The success of the measurement is predicated on the post-observation separation of galaxies with Ly α emission from the lower- z interloping galaxies, primarily [O ii ], with low contamination and high recovery rates. The Emission Line eXplorer (ELiXer) is the principal classification tool for HETDEX, providing a tunable balance between contamination and completeness as dictated by science needs. By combining multiple selection criteria, ELiXer improves upon the 20 Å rest-frame equivalent width cut commonly used to distinguish LAEs from lower- z [O ii ] emitting galaxies. Despite a spectral resolving power, R ∼ 800, that cannot resolve the [O ii ] doublet, we demonstrate the ability to distinguish LAEs from foreground galaxies with 98.1% accuracy. We estimate a contamination rate of Ly α by [O ii ] of 1.2% and a Ly α recovery rate of 99.1% using the default ELiXer configuration. These rates meet the HETDEX science requirements.more » « less
-
ABSTRACT We describe the target selection and characteristics of the DESI Peculiar Velocity Survey, the largest survey of peculiar velocities (PVs) using both the fundamental plane (FP) and the Tully–Fisher (TF) relationship planned to date. We detail how we identify suitable early-type galaxies (ETGs) for the FP and suitable late-type galaxies (LTGs) for the TF relation using the photometric data provided by the DESI Legacy Imaging Survey DR9. Subsequently, we provide targets for 373 533 ETGs and 118 637 LTGs within the Dark Energy Spectroscopic Instrument (DESI) 5-yr footprint. We validate these photometric selections using existing morphological classifications. Furthermore, we demonstrate using survey validation data that DESI is able to measure the spectroscopic properties to sufficient precision to obtain PVs for our targets. Based on realistic DESI fibre assignment simulations and spectroscopic success rates, we predict the final DESI PV Survey will obtain ∼133 000 FP-based and ∼53 000 TF-based PV measurements over an area of 14 000 deg2. We forecast the ability of using these data to measure the clustering of galaxy positions and PVs from the combined DESI PV and Bright Galaxy Surveys (BGS), which allows for cancellation of cosmic variance at low redshifts. With these forecasts, we anticipate a 4 per cent statistical measurement on the growth rate of structure at z < 0.15. This is over two times better than achievable with redshifts from the BGS alone. The combined DESI PV and BGS will enable the most precise tests to date of the time and scale dependence of large-scale structure growth at z < 0.15.