skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lazzati, Davide"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While gamma-ray bursts (GRBs) have the potential to shed light on the astrophysics of jets, compact objects, and cosmology, a major set back in their use as probes of these phenomena stems from our incomplete knowledge surrounding their prompt emission. There are numerous models that can account for various observations of GRBs in the gamma-ray and X-ray energy ranges, due to the flexibility in the number of parameters that can be tuned to increase agreement with data. Furthermore, these models lack predictive power that can test future spectropolarimetric observations of GRBs across the electromagnetic spectrum. In this work, we use the MCRaT radiative transfer code to calculate the X-ray spectropolarimetric signatures expected from the photospheric model for two unique hydrodynamic simulations of long GRBs. We make time-resolved and time-integrated comparisons between the X-ray and gamma-ray mock observations, shedding light on the information that can be obtained from X-ray prompt emission signatures. Our results show that theT90derived from the X-ray light curve is the best diagnostic for the time that the central engine is active. We also find that our simulations reproduce the observed characteristics of the Einstein Probe–detected GRB 240315C. Based on our simulations, we are also able to make predictions for future X-ray spectropolarimetric measurements. Our results show the importance of conducting global radiative transfer calculations of GRB jets to better contextualize the prompt emission observations and constrain the mechanisms that produce the prompt emission. 
    more » « less
  2. Abstract We analyze the spectral evolution of 62 bright Fermi gamma-ray bursts with large enough signal-to-noise to allow for time-resolved spectral analysis. We develop a new algorithm to test for single-pulse morphology that is insensitive to the specific shape of pulses. Instead, it only checks whether or not there are multiple, isolated, or statistical significant peaks in the light curve. In addition, we carry out a citizen science test to assess light-curve morphology and spectral evolution. We find that, no matter the adopted assessment method, bursts characterized by single-peaked prompt emission light curves have a greater tendency to also have a consistently decaying peak energy or hard-to-soft spectral evolution. This contrasts with the behavior of multipeaked bursts, for which the tendency is to have a peak frequency that is not monotonically decreasing. We discuss this finding in the theoretical framework of internal/external shocks and find it to be consistent with at least some single-pulse bursts associated with particularly high-density environments. 
    more » « less
  3. Abstract At least three members of the recently identified class of fast luminous blue optical transients show evidence of late-time electromagnetic activity in great excess of what was predicted by an extrapolation of the early time emission. In particular, AT2022tsd displays fast, bright optical fluctuations approximately a month after the initial detection. Here we propose that these transients are produced by exploding stars in black hole binary systems and that the late-time activity is due to the accretion of clumpy ejecta onto the companion black hole. We derive the energetics and timescales involved, compute the emission spectrum, and discuss whether the ensuing emission is diffused or not in the remnant. We find that this model can explain the observed range of behaviors for reasonable ranges of the orbital separation and the ejecta velocity and clumpiness. Close separation and clumpy, high-velocity ejecta result in bright variable emission, as seen in AT2022tsd. A wider separation and smaller ejecta velocity, conversely, give rise to fairly constant emission at a lower luminosity. We suggest that high-cadence, simultaneous, panchromatic monitoring of future transients should be carried out to better understand the origin of the late emission and the role of binarity in the diversity of explosive stellar transients. 
    more » « less
  4. Abstract GRB 221009A was the brightest gamma-ray burst (GRB) of all time (BOAT), surpassing in prompt brightness all GRBs discovered in ∼50 yr and in afterglow brightness in ∼20 yr. We observed the BOAT with XMM-Newton 2.3 days after the prompt. The X-ray afterglow was still very bright and we collected the largest number of photons with the reflection grating spectrometers (RGSs) on a GRB. We searched the RGS data for narrow emission or absorption features. We did not detect any bright line feature. A candidate narrow feature is identified at a (rest-frame) energy of 1.455 0.014 + 0.006 keV, consistent with an MgxiiKαemission line, slightly redshifted (0.012) with respect to the host galaxy. We assessed a marginal statistical significance of 3.0σfor this faint feature based on conservative Monte Carlo simulations, which requires caution for any physical interpretation. If this line feature would be for real, we propose that it might originate from the reflection in the innermost regions of the infalling funnel from low-level late-time activity emission of the central engine. 
    more » « less
  5. ABSTRACT The merger of two magnetized compact objects, such as neutron stars, forms a compact object which may launch a relativistic and collimated jet. Numerical simulations of the process show that a dense and highly magnetized medium surrounds the system. This study presents a semi-analytical model that models the effects that a static magnetized medium with a tangled field produces in relativistic, collimated, and non-magnetized jets. The model is a first approximation that addresses the magnetic field present in the medium and is based on pressure equilibrium principles between the jet, cocoon, and external medium. A fraction of the ambient medium field is allowed to be entrained in the cocoon. We find that the jet and cocoon properties may be affected by high magnetic fields (≳ 1015 G) and mixing. The evolution of the system may vary up to $$\sim 10{{\ \rm per\ cent}}$$ (compared to the non-magnetized case). Low-mixing may produce a slower broader jet with a broader and more energetic cocoon would be produced. On the other hand, high-mixing could produce a faster narrower jet with a narrow and less-energetic cocoon. Two-dimensional hydrodynamical simulations are used to validate the model and to constrain the mixing parameter. Although the magnetic field and mixing have a limited effect, our semi-analytic model captures the general trend consistent with numerical results. For high magnetization, the results were found to be more consistent with the low mixing case in our semi-analytic model. 
    more » « less
  6. Abstract Long-duration gamma-ray bursts (LGRBs), thought to be produced during core-collapse supernovae, may have a prominent neutron component in the outflow material. If present, neutrons can change how photons scatter in the outflow by reducing its opacity, thereby allowing the photons to decouple sooner than if there were no neutrons present. Understanding the details of this process could therefore allow us to probe the central engine of LGRBs, which is otherwise hidden. Here, we present results of the photospheric emission from an LGRB jet, using a combination of relativistic hydrodynamic simulations and radiative transfer postprocessing using Monte Carlo radiation transfer code. We control the size of the neutron component in the jet material by varying the equilibrium electron fractionYe, and we find that the presence of neutrons in the GRB fireball affects the Band parametersαandE0, while the picture with theβparameter is less clear. In particular, the break energyE0is shifted to higher energies. Additionally, we find that increasing the size of the neutron component also increases the total radiated energy of the outflow across multiple viewing angles. Our results not only shed light on LGRBs but are also relevant to short-duration gamma-ray bursts associated with binary neutron star mergers due to the likelihood of a prominent neutron component in such systems. 
    more » « less
  7. Abstract The origin of short gamma-ray bursts is associated with outflows powered by the remnant of a binary neutron star merger. This remnant can be either a black hole or a highly magnetized, fast-spinning neutron star, also known as a magnetar. Here we present the results of two relativistic magnetohydrodynamical simulations aimed at investigating the large-scale dynamics and propagation of magnetar collimated outflows through the medium surrounding the remnant. The first simulation evolves a realistic jet by injecting external simulation data, while the second evolves an analytical model jet with similar properties for comparison. We find that both outflows remain collimated and successfully emerge through the static medium surrounding the remnant. However, they fail to attain relativistic velocities and only reach a mean maximum speed of ∼0.7cfor the realistic jet and ∼0.6cfor the analytical jet. We also find that the realistic jet has a much more complex structure. The lack of highly relativistic speeds, which makes these jets unsuitable as short gamma-ray burst sources, is due to numerical limitations and is not general to all possible magnetar outflows. A jet like the one we study, however, could give rise to or augment a blue kilonova component. In addition, it would make the propagation of a relativistic jet easier, should one be launched after the neutron star collapses into a black hole. 
    more » « less
  8. ABSTRACT Both long and short gamma-ray bursts (GRBs) are expected to occur in the dense environments of active galactic nucleus (AGN) accretion discs. As these bursts propagate through the discs they live in, they photoionize the medium causing time-dependent opacity that results in transients with unique spectral evolution. In this paper, we use a line-of-sight radiation transfer code coupling metal and dust evolution to simulate the time-dependent absorption that occurs in the case of both long and short GRBs. Through these simulations, we investigate the parameter space in which dense environments leave a potentially observable imprint on the bursts. Our numerical investigation reveals that time-dependent spectral evolution is expected for central supermassive black hole masses between 105 and 5 × 107 solar masses in the case of long GRBs, and between 104 and 107 solar masses in the case of short GRBs. Our findings can lead to the identification of bursts exploding in AGN disc environments through their unique spectral evolution coupled with a central location. In addition, the study of the time-dependent evolution would allow for studying the disc structure, once the identification with an AGN has been established. Finally, our findings lead to insight into whether GRBs contribute to the AGN emission, and which kind, thus helping to answer the question of whether GRBs can be the cause of some of the as-of-yet unexplained AGN time variability. 
    more » « less
  9. Abstract Long and short gamma-ray bursts (GRBs), canonically separated at around 2 s duration, are associated with different progenitors: the collapse of a massive star and the merger of two compact objects, respectively. GRB 191019A was a long GRB (T90∼ 64 s). Despite the relatively small redshiftz= 0.248 and Hubble Space Telescope follow-up observations, an accompanying supernova was not detected. In addition, the host galaxy did not have significant star formation activity. Here we propose that GRB 191019A was produced by a binary compact merger, whose prompt emission was stretched in time by the interaction with a dense external medium. This would be expected if the burst progenitor was located in the disk of an active galactic nucleus, as supported by the burst localization close to the center of its host galaxy. We show that the light curve of GRB 191019A can be well modeled by a burst of intrinsic durationteng= 1.1 s and of energyEiso= 1051erg seen moderately off axis, exploding in a medium of density ∼107–108cm−3. The double-peaked light curve carries the telltale features predicted for GRBs in high-density media, where the first peak is produced by the photosphere and the second by the overlap of reverse shocks that take place before the internal shocks could happen. This would make GRB 191019A the first confirmed stellar explosion from within an accretion disk, with important implications for the formation and evolution of stars in accretion flows and for gravitational-waves source populations. 
    more » « less
  10. ABSTRACT The merger of two neutron stars (NSs) produces the emission of gravitational waves, the formation of a compact object surrounded by a dense and magnetized environment. If the binary undergoes delayed collapse a collimated and relativistic jet, which will eventually produce a short gamma-ray burst (SGRB), may be launched. The interaction of the jet with the environment has been shown to play a major role in shaping the structure of the outflow that eventually powers the gamma-ray emission. In this paper, we present a set of 2.5D RMHD simulations that follow the evolution of a relativistic non-magnetized jet through a medium with different magnetization levels, as produced after the merger of two NSs. We find that the predominant consequence of a magnetized ambient medium is that of suppressing instabilities within the jet and preventing the formation of a series of collimation shocks. One implication of this is that internal shocks lose efficiency, causing bursts with low-luminosity prompt emission. On the other hand, the jet-head velocity and the induced magnetization within the jet are fairly independent of the magnetization of the ambient medium. Future numerical studies with a larger domain are necessary to obtain light curves and spectra in order to better understand the role of magnetized media. 
    more » « less