skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Levy, Morgan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In December 2021, we installed four groundwater monitoring wells in Imperial Beach, California, to study the effects of sea level variability and implications for flood risks. We collected time series of groundwater table elevation (GWT) relative to a fixed vertical datum and local land surface elevation from 8 December 2021 through 14 May 2024. In each groundwater monitoring well, a single unvented pressure sensor (RBR Solo) was attached to Kevlar line and submerged ~1 m below the GWT. From 8 December 2021 through 21 November 2023, total pressure was recorded at 1 Hz; from 22 November 2023 through 14 May 2024, sampling occurred at 0.1 Hz. Gaps in sampling are a result of battery failures leading to data loss. To estimate hydrostatic pressure from total pressure measurements we subtracted atmospheric pressure measurements that were collected every 6 min from NOAA's National Data Buoy Center (NDBC) station SDBC1-9410170 at the San Diego airport and linearly interpolated to match sensor samples. Hydrostatic pressure is converted to sensor depth below the water table. We determined an average well water density, ρ, using intermittent vertical profiles of conductivity-temperature-depth (CTD) and the TEOS-10 conversion (Roquet et al. 2015). This object includes MATLAB (.mat) and HDF5 (.h5) files that contain the raw total pressure measurements from unvented RBR solos. The original Ruskin files (.rsk) are not included and have been converted to MATLAB files without loss of fidelity. Intermittent CTD profiles used to estimate well water density structure are included as CSV files. GWT that have been processed using atmospheric pressure and vertical datum measurements are included as HDF5 files. The object has five main directories, one for each of the four groundwater wells and one for data downloaded from other sources for archival and reproducibility purposes. Code for generating these files may be found on the GitHub repository (https://github.com/aubarnes/ImperialBeachGroundwater) or on Zenodo (https://doi.org/10.5281/zenodo.14969632). Code run with Python v3.12.7 Pastas v1.5.0 UTide v0.3.0 GSW v3.6.19 NumPy v1.26.4 Pandas v2.1.4 MatPlotLib v3.9.2 SciPy v 1.13.1 requests v2.32.3 intake v0.7.0 datetime pickle os 
    more » « less
  2. Saltwater intrusion (SWI) into coastal freshwater systems is a growing concern in the face of climate change‐driven sea level rise and hydrologic variability. Saltwater contamination of surface freshwater in the coastal California Pajaro Valley exemplifies this concern, where surface water cannot be diverted for agriculture if it is too saline. Closures at the mouth of the Pajaro River Lagoon, a bar‐built estuary in the Pajaro Valley, are associated with SWI. Closures and SWI are driven by a combination of offshore climate, coastal hydrodynamics, estuarine dynamics, inland hydrology, and infrastructure and management. Here, we describe the Pajaro Valley coastal water system and identify the oceanic and inland hydrologic drivers of SWI using available observational data between 2012 and 2020. We use time series and exploratory statistical analyses of coastal total water levels (TWLs), slough stage and salinity, river discharge, and contextual knowledge from local water managers. We observe that wet season lagoon closure and SWI events follow high oceanic TWLs coupled with low stage and discharge in the inland freshwater network, revealing how both wave and inland flow conditions govern lagoon closures and coincident SWI. This study yields novel empirical findings and a methodology for connecting coastal oceanography, estuarine coupled hydro‐ and morpho‐dynamics, inland hydrology, and water management practices relevant to climate change adaptation in human‐modified coastal water systems. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Abstract Rising groundwater tables due to sea level rise (SLR) pose a critical but understudied threat to low‐lying coastal regions. This study uses field observations and dynamic modeling to investigate drivers of groundwater variability and to project flooding risks from emergent groundwater in Imperial Beach, California. Hourly groundwater table data from four monitoring wells (2021–2024) reveal distinct aquifer behaviors across soil types. In transmissive coastal sandy soils, groundwater levels are dominated by ocean tides, with secondary contributions from non‐tidal sea level variability and seasonal recharge. In this setting, we calibrated an empirical groundwater model to observations, and forced the model with regional SLR scenarios. We project that groundwater emergence along the low‐lying coastal road will begin by the 2060s under intermediate SLR trajectories, and escalate to near‐daily flooding by 2100. Over 20% of San Diego County's coastline shares similar transmissive sandy geology and thus similar flooding risk. Results underscore the urgency of integrating groundwater hazards into coastal resilience planning, as current adaptation strategies in Imperial Beach—focused on surface flooding—are insufficient to address infrastructure vulnerabilities from below. This study provides a transferable framework for assessing groundwater‐driven flooding in transmissive coastal aquifers, where SLR‐induced groundwater rise threatens critical infrastructure decades before permanent inundation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Abstract Coupled human‐water systems (CHWS) are diverse and have been studied across a wide variety of disciplines. Integrating multiple disciplinary perspectives on CHWS provides a comprehensive and actionable understanding of these complex systems. While interdisciplinary integration has often remained elusive, specific combinations of disciplines might be comparably easier to integrate (compatible), and/or their combination might be particularly likely to uncover previously unobtainable insights (complementary). This paper systematically identifies such promising combinations by mapping disciplines along a common set of topical, philosophical, and methodological dimensions. It also identifies key challenges and lessons for multidisciplinary research teams seeking to integrate highly promising (complementary) but poorly compatible disciplines. Applied to eight disciplines that span the environmental physical sciences and the quantitative and qualitative social sciences, we found that promising combinations of disciplines identified by the typology broadly reproduce patterns of recent interdisciplinary collaborative research revealed by a bibliometric analysis. We also found that some disciplines are centrally located within the typology by being compatible and complementary to multiple other disciplines along distinct dimensions. This points to the potential for these disciplines to act as catalysts for wider interdisciplinary integration. This article is categorized under:Engineering Water > MethodsHuman Water > MethodsScience of Water > Methods 
    more » « less
  5. Rising atmospheric CO 2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO 2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata’s resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, and 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e., carry-over effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24, and 48 h) pH treatment (7.5 and 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and their gene expression responses highlight the role of transcriptome plasticity in this resilience. Larvae did not exhibit reduced growth under OA until they were at least 8 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely served as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Larvae reared in reduced pH conditions also took longer to become competent to metamorphose. In addition, while juvenile sizes at metamorphosis reflected larval rearing pH conditions, no carry-over effects on juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Transcriptomic analyses through time suggest that these energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. Carry-over effects from larval OA conditions were observed in juveniles; however, these effects were larger for more severe OA conditions and larvae reared in those conditions also demonstrated less transcriptome elasticity. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity may allow highly resilient organisms, like C. fornicata , to acclimate to reduced pH environments. 
    more » « less
  6. Abstract Climate change is expected to increase the scarcity and variability of fresh water supplies in some regions with important implications for irrigated agriculture. By allowing for increased flexibility in response to scarcity and by incentivizing the allocation of water to higher value use, markets can play an important role in limiting the economic losses associated with droughts. Using data on water demand, the seniority of water rights, county agricultural reports, high-resolution data on cropping patterns, and agronomic estimates of crop water requirements, we estimate the benefits of market-based allocations of surface water for California’s Central Valley. Specifically, we estimate the value of irrigation water and compare the agricultural costs of water shortages under the existing legal framework and under an alternate system that allows for trading of water. We find that a more efficient allocation of curtailments could reduce the costs of water shortages by as much as $362 million dollars per year or 4.4% of the net agricultural revenue in California in expectation, implying that institutional and market reform may offer important opportunities for adaptation. 
    more » « less