skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lewis, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Teaching STEM for social justice is essential to ensure that K-12 students experience opportunities to learn that attend to time in instruction, the quality of instruction, and the use of technology (Tate, 2001) to engages students in STEM learning. This themed paper-set endeavors to introduce three intentionally designed courses aimed at helping STEM educators better understand liberatory design, justice-centered STEM pedagogy, and most of all teaching STEM for social justice. 
    more » « less
  2. This Letter reports new results from the HAYSTAC experiment’s search for dark matter axions in our galactic halo. It represents the widest search to date that utilizes squeezing to realize subquantum limited noise. The new results cover 1.71 μ eV of newly scanned parameter space in the mass ranges 17.28 18.44 μ eV and 18.71 19.46 μ eV . No statistically significant evidence of an axion signal was observed, excluding couplings | g γ | 2.75 × | g γ KSVZ | and | g γ | 2.96 × | g γ KSVZ | at the 90% confidence level over the respective region. By combining this data with previously published results using HAYSTAC’s squeezed state receiver, a total of 2.27 μ eV of parameter space has now been scanned between 16.96 19.46 μ eV μ eV , excluding | g γ | 2.86 × | g γ KSVZ | at the 90% confidence level. These results demonstrate the squeezed state receiver’s ability to probe axion models over a significant mass range while achieving a scan rate enhancement relative to a quantum-limited experiment. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract Cryogenic calorimetric experiments to search for neutrinoless double-beta decay ($$0\nu \beta \beta $$ 0 ν β β ) are highly competitive, scalable and versatile in isotope. The largest planned detector array, CUPID, is comprised of about 1500 individual Li$$_{2}$$ 2 $$^{100}$$ 100 MoO$$_4$$ 4 detector modules with a further scale up envisioned for a follow up experiment (CUPID-1T). In this article, we present a novel detector concept targeting this second stage with a low impedance TES based readout for the Li$$_2$$ 2 MoO$$_4$$ 4 absorber that is easily mass-produced and lends itself to a multiplexed readout. We present the detector design and results from a first prototype detector operated at the NEXUS shallow underground facility at Fermilab. The detector is a 2-cm-side cube with 21 g mass that is strongly thermally coupled to its readout chip to allow rise-times of$$\sim $$ 0.5 ms. This design is more than one order of magnitude faster than present NTD based detectors and is hence expected to effectively mitigate backgrounds generated through the pile-up of two independent two neutrino decay events coinciding close in time. Together with a baseline resolution of 1.95 keV (FWHM) these performance parameters extrapolate to a background index from pile-up as low as$$5\cdot 10^{-6}$$ 5 · 10 - 6  counts/keV/kg/yr in CUPID size crystals. The detector was calibrated up to the MeV region showing sufficient dynamic range for$$0\nu \beta \beta $$ 0 ν β β searches. In combination with a SuperCDMS HVeV detector this setup also allowed us to perform a precision measurement of the scintillation time constants of Li$$_2$$ 2 MoO$$_4$$ 4 , which showed a primary component with a fast O(20 $$\upmu $$ μ s) time scale. 
    more » « less
  4. It is important for future engineers to understand themselves in relation to the many cultural influences they may encounter during their career, and to confront their own biases when interacting with colleagues whose cultural backgrounds are different from their own. This paper describes and evaluates a series of nine diversity, equity, and inclusion (DEI) workshops developed and implemented during the summer of 2022 for high school and entering first-year college students enrolled in the Research, Academics, and Mentoring Pathways (RAMP) six week engineering summer bridge program at University of Massachusetts Lowell. The workshops incorporated activities designed to create an environment fostering respect, belonging, and acceptance to make teamwork more inclusive and effective. Each workshop was based on collaborative learning and used a broad range of strategies to engage students as active participants in learning about diversity, equity, and inclusion within the context of teamwork. To develop the workshops, the facilitators aligned the activities with key themes from chapters in the book From Athletics to Engineering: 8 Ways to Support Diversity, Equity, and Inclusion for All [1]. The summer bridge program was evaluated using quantitative and qualitative data collected throughout the program and upon its conclusion tracking students’ reactions and levels of engagement in each of the program components. This included a pre-survey, mid-semester survey, post-survey, and weekly journal prompts on Google Classroom. We also used the Universality-Diversity scale [2] to measure any pre-post changes in students’ attitudes towards diversity. With regard to the workshops, an analysis of student responses indicated a high level of satisfaction and sense of accomplishment. Students reported they enjoyed getting to know each other better and that the DEI activities were interactive, educational, and engaging. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Stratocumulus clouds over the Southern Ocean have fewer droplets and are more likely to exist in the predominately supercooled phase than clouds at similar temperatures over northern oceans. One likely reason is that this region has few continental and anthropogenic sources of cloud-nucleating particles that can form droplets and ice. In this work, we present an overview of aerosol particle types over the Southern Ocean, including new measurements made below, in and above clouds in this region. These measurements and others indicate that biogenic sulfur-based particles >0.1 μm diameter contribute the majority of cloud condensation nuclei number concentrations in summer. Ice nucleating particles tend to have more organic components, likely from sea-spray. Both types of cloud nucleating particles may increase in a warming climate likely to have less sea ice, more phytoplankton activity, and stronger winds over the Southern Ocean near Antarctica. Taken together, clouds over the Southern Ocean may become more reflective and partially counter the region’s expected albedo decrease due to diminishing sea ice. However, detailed modeling studies are needed to test this hypothesis due to the complexity of ocean-cloud-climate feedbacks in the region. 
    more » « less
  7. Abstract Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole (SMBH)1–3. These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase4–6. A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8–12 billion years ago (redshifts 1–3)7. Here we report a dynamical measurement of the mass of the black hole in a luminous quasar at a redshift of 2, with a look back in time of 11 billion years, by spatially resolving the broad-line region (BLR). We detect a 40-μas (0.31-pc) spatial offset between the red and blue photocentres of the Hα line that traces the velocity gradient of a rotating BLR. The flux and differential phase spectra are well reproduced by a thick, moderately inclined disk of gas clouds within the sphere of influence of a central black hole with a mass of 3.2 × 108 solar masses. Molecular gas data reveal a dynamical mass for the host galaxy of 6 × 1011 solar masses, which indicates an undermassive black hole accreting at a super-Eddington rate. This suggests a host galaxy that grew faster than the SMBH, indicating a delay between galaxy and black hole formation for some systems. 
    more » « less
  8. null (Ed.)