skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jiaxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geophysical characterization of calderas is fundamental in assessing their potential for future catastrophic volcanic eruptions. The mechanism behind the unrest of Long Valley Caldera in California remains highly debated, with recent periods of uplift and seismicity driven either by the release of aqueous fluids from the magma chamber or by the intrusion of magma into the upper crust. We use distributed acoustic sensing data recorded along a 100-kilometer fiber-optic cable traversing the caldera to image its subsurface structure. Our images highlight a definite separation between the shallow hydrothermal system and the large magma chamber located at ~12-kilometer depth. The combination of the geological evidence with our results shows how fluids exsolved through second boiling provide the source of the observed uplift and seismicity. 
    more » « less
  2. Abstract Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. However, its distinct characteristics, such as unknown ground coupling and high noise level, pose challenges to signal processing. Existing machine learning models optimized for conventional seismic data struggle with DAS data due to its ultra-dense spatial sampling and limited manual labels. We introduce a semi-supervised learning approach to address the phase-picking task of DAS data. We use the pre-trained PhaseNet model to generate noisy labels of P/S arrivals in DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels and build training datasets. We develop PhaseNet-DAS, a deep learning model designed to process 2D spatio-temporal DAS data to achieve accurate phase picking and efficient earthquake detection. Our study demonstrates a method to develop deep learning models for DAS data, unlocking the potential of integrating DAS in enhancing earthquake monitoring. 
    more » « less
  3. Abstract Earthquake focal mechanisms provide critical in-situ insights about the subsurface faulting geometry and stress state. For frequent small earthquakes (magnitude< 3.5), their focal mechanisms are routinely determined using first-arrival polarities picked on the vertical component of seismometers. Nevertheless, their quality is usually limited by the azimuthal coverage of the local seismic network. The emerging distributed acoustic sensing (DAS) technology, which can convert pre-existing telecommunication cables into arrays of strain/strain-rate meters, can potentially fill the azimuthal gap and enhance constraints on the nodal plane orientation through its long sensing range and dense spatial sampling. However, determining first-arrival polarities on DAS is challenging due to its single-component sensing and low signal-to-noise ratio for direct body waves. Here, we present a data-driven method that measures P-wave polarities on a DAS array based on cross-correlations between earthquake pairs. We validate the inferred polarities using the regional network catalog on two DAS arrays, deployed in California and each comprising ~ 5000 channels. We demonstrate that a joint focal mechanism inversion combining conventional and DAS polarity picks improves the accuracy and reduces the uncertainty in the focal plane orientation. Our results highlight the significant potential of integrating DAS with conventional networks for investigating high-resolution earthquake source mechanisms. 
    more » « less
  4. Abstract Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satelliteM*≈ 108M. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing. 
    more » « less
  5. With the spreading of hate speech on social media in recent years, automatic detection of hate speech is becoming a crucial task and has attracted attention from various communities. This task aims to recognize online posts (e.g., tweets) that contain hateful information. The peculiarities of languages in social media, such as short and poorly written content, lead to the difficulty of learning semantics and capturing discriminative features of hate speech. Previous studies have utilized additional useful resources, such as sentiment hashtags, to improve the performance of hate speech detection. Hashtags are added as input features serving either as sentiment-lexicons or extra context information. However, our close investigation shows that directly leveraging these features without considering their context may introduce noise to classifiers. In this paper, we propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework. We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts. The semantic relation inference aims to encourage the model to encode sentiment-indicative information into representations of online posts. We conduct extensive experiments on two real-world datasets and demonstrate the effectiveness of our proposed framework compared with state-of-the-art representation learning models. 
    more » « less
  6. ABSTRACT The Merian survey is mapping ∼ 850 deg2 of the Hyper Suprime-Cam Strategic Survey Program (HSC-SSP) wide layer with two medium-band filters on the 4-m Victor M. Blanco telescope at the Cerro Tololo Inter-American Observatory, with the goal of carrying the first high signal-to-noise (S/N) measurements of weak gravitational lensing around dwarf galaxies. This paper presents the design of the Merian filter set: N708 (λc = 7080 Å, Δλ = 275 Å) and N540 (λc = 5400 Å, Δλ = 210 Å). The central wavelengths and filter widths of N708 and N540 were designed to detect the $$\rm H\alpha$$ and $$\rm [OIII]$$ emission lines of galaxies in the mass range $$8\lt \rm \log M_*/M_\odot \lt 9$$ by comparing Merian fluxes with HSC broad-band fluxes. Our filter design takes into account the weak lensing S/N and photometric redshift performance. Our simulations predict that Merian will yield a sample of ∼ 85 000 star-forming dwarf galaxies with a photometric redshift accuracy of σΔz/(1 + z) ∼ 0.01 and an outlier fraction of $$\eta =2.8~{{\ \rm per\ cent}}$$ over the redshift range 0.058 < z < 0.10. With 60 full nights on the Blanco/Dark Energy Camera (DECam), the Merian survey is predicted to measure the average weak lensing profile around dwarf galaxies with lensing S/N ∼32 within r < 0.5 Mpc and lensing S/N ∼90 within r < 1.0 Mpc. This unprecedented sample of star-forming dwarf galaxies will allow for studies of the interplay between dark matter and stellar feedback and their roles in the evolution of dwarf galaxies. 
    more » « less
  7. Abstract Underwater Distributed Acoustic Sensing (DAS) utilizes optical fiber as a continuous sensor array. It enables high‐resolution data collection over long distances and holds promise to enhance tsunami early warning capabilities. This research focuses on detecting infragravity and tsunami waves associated with earthquakes and understanding their origin and dispersion characteristics through frequency‐wavenumber domain transformations and beamforming techniques. We propose a velocity correction method based on adjusting the apparent channel spacing according to water depth to overcome the challenge of detecting long‐wavelength and long‐period tsunami signals. Experimental results demonstrate the successful retrieval of infragravity and tsunami waves using a subsea optical fiber in offshore Oregon. These findings underscore the potential of DAS technology to complement existing infragravity waves detection systems, enhance preparedness, and improve response efforts in coastal communities. Further research and development in this field are crucial to fully utilize the capabilities of DAS for enhanced tsunami monitoring and warning systems. 
    more » « less
  8. Abstract Distributed Acoustic Sensing (DAS) is a promising technique to improve the rapid detection and characterization of earthquakes. Previous DAS studies mainly focus on the phase information but less on the amplitude information. In this study, we compile earthquake data from two DAS arrays in California, USA, and one submarine array in Sanriku, Japan. We develop a data‐driven method to obtain the first scaling relation between DAS amplitude and earthquake magnitude. Our results reveal that the earthquake amplitudes recorded by DAS in different regions follow a similar scaling relation. The scaling relation can provide a rapid earthquake magnitude estimation and effectively avoid uncertainties caused by the conversion to ground motions. Our results show that the scaling relation appears transferable to new regions with calibrations. The scaling relation highlights the great potential of DAS in earthquake source characterization and early warning. 
    more » « less