Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract While whistler‐mode waves are generated by injected anisotropic electrons on the nightside, the observed day‐night asymmetry of wave distributions raises an intriguing question about their generation on the dayside. In this study, we evaluate the distributions of whistler‐mode wave amplitudes and electrons as a function of distance from the magnetopause (MP) on the dayside from 6 to 18 hr in magnetic local time (MLT) within ±18° of magnetic latitude using the Time History of Events and Macroscale Interaction During Substorms measurements from June 2010 to August 2018. Specifically, under different levels of solar wind dynamic pressure and geomagnetic index, we conduct a statistical analysis to examine whistler‐mode wave amplitude, as well as anisotropy and phase space density (PSD) of source electrons across 1–20 keV energies, which potentially provide a source of free energy for wave generation. In coordinates relative to the MP, we find that lower‐band (0.05–0.5fce) waves occur much closer to the MP than upper‐band (0.5–0.8fce) waves, wherefceis electron cyclotron frequency. Our statistical results reveal that strong waves are associated with high anisotropy and high PSD of source electrons near the equator, indicating a preferred region for local wave generation on the dayside. Over 10–14 hr in MLT, as latitude increases, electron anisotropy decreases, while whistler‐mode wave amplitudes increase, suggesting that wave propagation from the equator to higher latitudes, along with amplification along the propagation path, is necessary to explain the observed waves on the dayside.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available August 30, 2025
-
Free, publicly-accessible full text available July 10, 2025
-
Free, publicly-accessible full text available May 16, 2025
-
Abstract During geomagnetic storms relativistic outer radiation belt electron flux exhibits large variations on rapid time scales of minutes to days. Many competing acceleration and loss processes contribute to the dynamic variability of the radiation belts; however, distinguishing the relative contribution of each mechanism remains a major challenge as they often occur simultaneously and over a wide range of spatiotemporal scales. In this study, we develop a new comprehensive model for storm‐time radiation belt dynamics by incorporating electron wave‐particle interactions with parallel propagating whistler mode waves into our global test‐particle model of the outer belt. Electron trajectories are evolved through the electromagnetic fields generated from the Multiscale Atmosphere‐Geospace Environment (MAGE) global geospace model. Pitch angle scattering and energization of the test particles are derived from analytical expressions for quasi‐linear diffusion coefficients that depend directly on the magnetic field and density from the magnetosphere simulation. Using a study of the 17 March 2013 geomagnetic storm, we demonstrate that resonance with lower band chorus waves can produce rapid relativistic flux enhancements during the main phase of the storm. While electron loss from the outer radiation belt is dominated by loss through the magnetopause, wave‐particle interactions drive significant atmospheric precipitation. We also show that the storm‐time magnetic field and cold plasma density evolution produces strong, local variations of the magnitude and energy of the wave‐particle interactions and is critical to fully capturing the dynamic variability of the radiation belts caused by wave‐particle interactions.more » « less
-
β -Ga2O3 is actively touted as the next ultrawide bandgap material for power electronics. To fully utilize its high intrinsic critical electric field, development of high-quality robust large-barrier height junctions is essential. To this end, various high-work function metals, metal oxides, and hole-conducting oxides have been deposited on Ga2O3, primarily formed by sputter deposition. Unfortunately, reports to date indicate that measured barrier heights often deviate from the Schottky–Mott model as well as x-ray photoelectron spectroscopy (XPS) extractions of conduction band offsets, suggesting significant densities of electrically active defects at these junctions. We report Schottky diodes made from noble metal oxides, IrO2 and RuO2, deposited by ozone molecular beam epitaxy (ozone MBE) with barrier heights near 1.8 eV. These barriers show close agreement across extraction methods and robust to high surface electric fields upward of 6 MV/cm and 60 A/cm2 reverse current without degradation.more » « less
-
Köhler, C (Ed.)Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.more » « less