skip to main content

Search for: All records

Creators/Authors contains: "Lin, Yu-Ru"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. Though significant efforts such as removing false claims and promoting reliable sources have been increased to combat COVID-19 misinfodemic, it remains an unsolved societal challenge if lacking a proper understanding of susceptible online users, i.e., those who are likely to be attracted by, believe and spread misinformation. This study attempts to answer who constitutes the population vulnerable to the online misinformation in the pandemic, and what are the robust features and short-term behavior signals that distinguish susceptible users from others. Using a 6-month longitudinal user panel on Twitter collected from a geopolitically diverse network-stratified samples in the US, we distinguishmore »different types of users, ranging from social bots to humans with various level of engagement with COVID-related misinformation. We then identify users' online features and situational predictors that correlate with their susceptibility to COVID-19 misinformation. This work brings unique contributions: First, contrary to the prior studies on bot influence, our analysis shows that social bots' contribution to misinformation sharing was surprisingly low, and human-like users' misinformation behaviors exhibit heterogeneity and temporal variability. While the sharing of misinformation was highly concentrated, the risk of occasionally sharing misinformation for average users remained alarmingly high. Second, our findings highlight the political sensitivity activeness and responsiveness to emotionally-charged content among susceptible users. Third, we demonstrate a feasible solution to efficiently predict users' transient susceptibility solely based on their short-term news consumption and exposure from their networks. Our work has an implication in designing effective intervention mechanism to mitigate the misinformation dissipation.« less
    Free, publicly-accessible full text available January 1, 2023
  4. The ideological asymmetries have been recently observed in contested online spaces, where conservative voices seem to be relatively more pronounced even though liberals are known to have the population advantage on digital platforms. Most prior research, however, focused on either one single platform or one single political topic. Whether an ideological group garners more attention across platforms and/or topics, and how the attention dynamics evolve over time, have not been explored. In this work, we present a quantitative study that links collective attention across two social platforms -- YouTube and Twitter, centered on online activities surrounding popular videos of threemore »controversial political topics including Abortion, Gun control, and Black Lives Matter over 16 months. We propose several sets of video-centric metrics to characterize how online attention is accumulated for different ideological groups. We find that neither side is on a winning streak: left-leaning videos are overall more viewed, more engaging, but less tweeted than right-leaning videos. The attention time series unfold quicker for left-leaning videos, but span a longer time for right-leaning videos. Network analysis on the early adopters and tweet cascades show that the information diffusion for left-leaning videos tends to involve centralized actors; while that for right-leaning videos starts earlier in the attention lifecycle. In sum, our findings go beyond the static picture of ideological asymmetries in digital spaces and provide a set of methods to quantify attention dynamics across different social platforms.« less
    Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available August 1, 2022