Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN;
Meloidogyne incognita ) infection induces autophagy in tomato (Solanum lycopersicum ) and differentatg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activatingATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1. -
Abstract We used data from the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) to study the incidence of AGN in continuum-selected galaxies at z ∼ 3. From optical and infrared imaging in the 24 deg 2 Spitzer HETDEX Exploratory Large Area survey, we constructed a sample of photometric-redshift selected z ∼ 3 galaxies. We extracted HETDEX spectra at the position of 716 of these sources and used machine-learning methods to identify those which exhibited AGN-like features. The dimensionality of the spectra was reduced using an autoencoder, and the latent space was visualized through t-distributed stochastic neighbor embedding. Gaussian mixture models were employed to cluster the encoded data and a labeled data set was used to label each cluster as either AGN, stars, high-redshift galaxies, or low-redshift galaxies. Our photometric redshift (photo z ) sample was labeled with an estimated 92% overall accuracy, an AGN accuracy of 83%, and an AGN contamination of 5%. The number of identified AGN was used to measure an AGN fraction for different magnitude bins. The ultraviolet (UV) absolute magnitude where the AGN fraction reaches 50% is M UV = −23.8. When combined with results in the literature, our measurements of AGN fraction imply that the bright end of the galaxy luminosity function exhibits a power law rather than exponential decline, with a relatively shallow faint-end slope for the z ∼ 3 AGN luminosity function.more » « less
-
Abstract Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby–Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30–2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 ≲
λ ≲ 5540 Å) on the 10 m Hobby–Eberly Telescope. The fiber filling factor within ±30″ of SN 2023ixf is 80% with a spatial resolution of 1″. Ther < 5.″5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (ΣSFR) show weak increasing trends in the radial distributions within ther < 5.″5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR withinr < 3″ areE (B −V ) = 0.06 ± 0.14, and There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of theR 23calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (∼Z ☉). The archival deep images from the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in thez band at 22.778 ± 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u ,g ,r ,i ). The results suggest a massive progenitor of ≈22M ☉. -
Abstract We present analysis using a citizen science campaign to improve the cosmological measures from the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the Hubble expansion rate,
H (z ), and angular diameter distance,D A(z ), atz = 2.4, each to percent-level accuracy. This accuracy is determined primarily from the total number of detected Lyα emitters (LAEs), the false positive rate due to noise, and the contamination due to [Oii ] emitting galaxies. This paper presents the citizen science project, Dark Energy Explorers (https://www.zooniverse.org/projects/erinmc/dark-energy-explorers ), with the goal of increasing the number of LAEs and decreasing the number of false positives due to noise and the [Oii ] galaxies. Initial analysis shows that citizen science is an efficient and effective tool for classification most accurately done by the human eye, especially in combination with unsupervised machine learning. Three aspects from the citizen science campaign that have the most impact are (1) identifying individual problems with detections, (2) providing a clean sample with 100% visual identification above a signal-to-noise cut, and (3) providing labels for machine-learning efforts. Since the end of 2022, Dark Energy Explorers has collected over three and a half million classifications by 11,000 volunteers in over 85 different countries around the world. By incorporating the results of the Dark Energy Explorers, we expect to improve the accuracy on theD A(z ) andH (z ) parameters atz = 2.″4 by 10%–30%. While the primary goal is to improve on HETDEX, Dark Energy Explorers has already proven to be a uniquely powerful tool for science advancement and increasing accessibility to science worldwide. -
Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is an untargeted spectroscopic survey that aims to measure the expansion rate of the universe at z ∼ 2.4 to 1% precision for both H ( z ) and D A ( z ). HETDEX is in the process of mapping in excess of one million Ly α emitting (LAE) galaxies and a similar number of lower- z galaxies as a tracer of the large-scale structure. The success of the measurement is predicated on the post-observation separation of galaxies with Ly α emission from the lower- z interloping galaxies, primarily [O ii ], with low contamination and high recovery rates. The Emission Line eXplorer (ELiXer) is the principal classification tool for HETDEX, providing a tunable balance between contamination and completeness as dictated by science needs. By combining multiple selection criteria, ELiXer improves upon the 20 Å rest-frame equivalent width cut commonly used to distinguish LAEs from lower- z [O ii ] emitting galaxies. Despite a spectral resolving power, R ∼ 800, that cannot resolve the [O ii ] doublet, we demonstrate the ability to distinguish LAEs from foreground galaxies with 98.1% accuracy. We estimate a contamination rate of Ly α by [O ii ] of 1.2% and a Ly α recovery rate of 99.1% using the default ELiXer configuration. These rates meet the HETDEX science requirements.more » « less
-
Abstract We investigate the stellar mass–black hole mass (
) relation with type 1 active galactic nuclei (AGNs) down to , corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz = 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs with ranging from 107–1010M ⊙that are measured with single-epoch virial method using Civ emission lines detected in the HETDEX spectra. of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALE spectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the relation covering the unexplored low-mass ranges of , and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic relation atz ∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime of . Our relation is inconsistent with the suppression at the low- regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations. -
Abstract We have extracted 636 spectra taken at the positions of 583 transient sources from the third data release of the Hobby–Eberly Telescope Dark Energy eXperiment (HETDEX). The transients were discovered by the Zwicky Transient Facility (ZTF) during 2018–2022. The HETDEX spectra provide a potential means to obtain classifications for a large number of objects found by photometric surveys for free. We attempt to explore and classify the spectra by utilizing several template-matching techniques. We have identified two transient sources, ZTF20aatpoos = AT 2020fiz and ZTF19abdkelq, as supernova (SN) candidates. We classify AT 2020fiz as a Type IIP SN observed ∼10 days after explosion, and we propose ZTF19abdkelq as a likely Type Ia SN caught ∼40 days after maximum light. ZTF photometry of these two sources are consistent with their classifications as SNe. Beside these two objects, we have confirmed several ZTF transients as variable active galactic nuclei based on their spectral appearance, and determined the host galaxy types of several other ZTF transients.
-
null (Ed.)Abstract Due to their high coherence, lasers are ubiquitous tools in science. We show that by engineering the coupling between the gain medium and the laser cavity as well as the laser cavity and the output port, it is possible to eliminate most of the noise due to photons entering as well as leaving the laser cavity. Hence, it is possible to reduce the laser linewidth by a factor equal to the number of photons in the laser cavity below the standard quantum limit. We design and theoretically analyze a superconducting circuit that uses Josephson junctions, capacitors and inductors to implement a microwave laser, including the low-noise couplers that allow the design to surpass the standard quantum limit. Our proposal relies on the elements of superconducting quantum information, and thus is an example of how quantum engineering techniques can inspire us to re-imagine the limits of conventional quantum systems.more » « less
-
Abstract We describe the ensemble properties of the 1.9 <
z < 3.5 Lyman alpha emitters (LAEs) found in the HETDEX survey’s first public data release, HETDEX Public Source Catalog 1. Stacking the low-resolution (R ∼ 800) spectra greatly increases the signal-to-noise ratio (S/N), revealing spectral features otherwise hidden by noise, and we show that the stacked spectrum is representative of an average member of the set. The flux-limited, Lyα S/N restricted stack of 50,000 HETDEX LAEs shows the ensemble biweightaverage z ∼ 2.6 LAE to be a blue (UV continuum slope ∼ −2.4 andE(B – V) < 0.1), moderately bright (M UV∼ −19.7) star-forming galaxy with strong Lyα emission (logL Lyα ∼ 42.8 andW λ (Lyα ) ∼ 114 Å), and potentially significant leakage of ionizing radiation. The rest-frame UV light is dominated by a young, metal-poor stellar population with an average age of 5–15 Myr and metallicity of 0.2–0.3Z ⊙.