skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Insight into the molecular mechanisms governing the development and maintenance of pluripotency is important for understanding early development and the use of stem cells in regenerative medicine. We demonstrate the selective inhibition of mTORC1 signaling is important for developing the inner cell mass (ICM) and the self-renewal of human embryonic stem cells. S6K suppressed the expression and function of pluripotency-related transcription factors (PTFs) OCT4, SOX2, and KLF4 through phosphorylation and ubiquitin proteasome-mediated protein degradation, indicating that S6K inhibition is required for pluripotency. PTFs inhibited mTOR signaling. The phosphorylation of S6 was decreased in PTF-positive cells of the ICM in embryos. Activation of mTORC1 signaling blocked ICM formation and the selective inhibition of S6K by rapamycin increased the ICM size in mouse blastocysts. Thus, selective inhibition of mTORC1 signaling supports the development and maintenance of pluripotency.

     
    more » « less
  2. Free, publicly-accessible full text available May 29, 2024
  3. Abstract

    Understanding the propagation of shortening, especially the interaction of shallow and deep structural levels in space and time is important to understand the accretion process of a compressional orogen as well as to fully understand earthquake hazards to populated foreland basins. Here we combine evidence from geologic maps and stream‐terrace surveys to construct a set of retrodeformable cross‐sections of the western North Qilian Shan foreland. The uplifted, severely tilted Mesozoic and older rock units suggest the presence of both deep and shallow décollements in western and central part of our research area, and that these structures alternated activity since commencement of the latest phase of the North Qilian Shan uplift. Conversely, in the east, the absence of foreland fold‐and‐thrust belt and the moderately tilted Mesozoic rocks indicate the deformation is dominated by thick‐skinned uplift. Based on our cross‐sections, we estimate the long‐term shortening rate of the Jiuxi foreland basin of 1.2–1.8 m/Kyr. Deformed foreland terraces show that, from west to east in our research area, active deformation switches between different structural levels. This trade‐off between deformation styles in time and space shows that two décollement levels bound a crustal‐scale duplex as the foreland is incorporated into the orogen. We suggest the complex and out‐of‐sequence deformation pattern may relate to pre‐existing weakness within the basement rocks and is likely a common characteristic of the North Qilian foreland. This may impose an additional challenge for seismic hazard estimation of the region.

     
    more » « less
  4. Abstract

    Five out of six La Niña events since 1998 have lasted two to three years. Why so many long-lasting multiyear La Niña events have emerged recently and whether they will become more common remains unknown. Here we show that ten multiyear La Niña events over the past century had an accelerated trend, with eight of these occurring after 1970. The two types of multiyear La Niña events over this time period followed either a super El Niño or a central Pacific El Niño. We find that multiyear La Niña events differ from single-year La Niñas by a prominent onset rate, which is rooted in the western Pacific warming-enhanced zonal advective feedback for the central Pacific multiyear La Niña events type and thermocline feedback for the super El Niño multiyear La Niña events type. The results from large ensemble climate simulations support the observed multiyear La Niña events–western Pacific warming link. More multiyear La Niña events will exacerbate adverse socioeconomic impacts if the western Pacific continues to warm relative to the central Pacific.

     
    more » « less
  5. The diffusion of colloids, nanoparticles, and small molecules near the gas–liquid interface presents interesting multiphase transport phenomena and unique opportunities for understanding interactions near the surface and interface. Stratification happens when different species preside over the interfaces in the final dried coating structure. Understanding the principles of stratification can lead to emerging technologies for materials’ fabrication and has the potential to unlock innovative industrial solutions, such as smart coatings and drug formulations for controlled release. However, stratification can be perplexing and unpredictable. It may involve a complicated interplay between particles and interfaces. The surface chemistry and solution conditions are critical in determining the race of particles near the interface. Current theory and simulation cannot fully explain the observations in some experiments, especially the newly developed stratification of nano-surfactants. Here, we summarize the efforts in the experimental work, theory, and simulation of stratification, with an emphasis on bridging the knowledge gap between our understanding of surface adsorption and bulk diffusion. We will also propose new mechanisms of stratification based on recent observations of nano-surfactant stratification. More importantly, the discussions here will lay the groundwork for future studies beyond stratification and nano-surfactants. The results will lead to the fundamental understanding of nanoparticle interactions and transport near interfaces, which can profoundly impact many other research fields, including nanocomposites, self-assembly, colloidal stability, and nanomedicine. 
    more » « less
  6. ABSTRACT

    Multi-band photometric observations of 11 totally eclipsing contact binaries were carried out. Applying the Wilson–Devinney program, photometric solutions were obtained. There are two W-subtype systems, which are CRTS J133031.1+161202 and CRTS J154254.0+324652, and the rest of the systems are A-subtype systems. CRTS J154254.0 + 324652 has the highest fill-out factor with 94.3 per cent, and the lowest object is CRTS J155009.2 + 493639 with only 18.9 per cent. The mass ratios of the 11 systems are all less than 0.1, which means that they are extremely low-mass ratio binary systems. We performed period variation investigation and found that the orbital periods of three systems decrease slowly, which may be caused by the materials may transfer from the primary component to the secondary component, and those of six systems increase slowly, which indicates that the materials may transfer from the secondary component to the primary component. LAMOST low-resolution spectra of four objects were analysed, and using the spectral subtraction technique, Hα emission line was detected, which means that the four objects exhibit chromospheric activity. In order to understand their evolutionary status, the mass–luminosity and mass–radius diagrams were plotted. The two diagrams indicate that the primary component is in the main sequence evolution stage, and the secondary component is above TAMS, indicating that they are over-luminous. To determine whether the 11 systems are in a stable state, the ratio of spin angular momentum to orbital angular momentum (Js/Jo) and the instability parameters were calculated, and we argued that CRTS J234634.7 + 222824 is on the verge of a merger.

     
    more » « less