Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 28, 2025
-
Free, publicly-accessible full text available May 13, 2025
-
Free, publicly-accessible full text available April 24, 2025
-
Free, publicly-accessible full text available November 1, 2024
-
Free, publicly-accessible full text available January 3, 2025
-
The earth’s orbit is becoming increasingly crowded with debris that poses significant safety risks to the operation of existing and new spacecraft and satellites. The active tether-net system, which consists of a flexible net with maneuverable corner nodes, launched from a small autonomous spacecraft, is a promising solution to capturing and disposing of such space debris. The requirement of autonomous operation and the need to generalize over debris scenarios in terms of different rotational rates makes the capture process significantly challenging. The space debris could rotate about multiple axes, which along with sensing/estimation and actuation uncertainties, call for a robust, generalizable approach to guiding the net launch and flight – one that can guarantee robust capture. This paper proposes a decentralized actuation system combined with reinforcement learning based on prior work in designing and controlling this tether-net system. In this new system, four microsatellites with thrusters act as the corner nodes of the net, and can thus help control the flight of the net after launch. The microsatellites pull the net to complete the task of approaching and capturing the space debris. The proposed method uses a reinforcement learning framework that integrates a proximal policy optimization to find the optimal solution based on the dynamics simulation of the net and the MUs in Vortex Studio. The reinforcement learning framework finds the optimal trajectory that is both energy-efficient and ensures a desired level of capture qualitymore » « less