skip to main content


Search for: All records

Creators/Authors contains: "Liu, Hongbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people‚Äôs movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities. 
    more » « less
  2. Missing value (MV) imputation is a critical preprocessing means for data mining. Nevertheless, existing MV imputation methods are mostly designed for batch processing, and thus are not applicable to streaming data, especially those with poor quality. In this article, we propose a framework, called Real-time and Error-tolerant Missing vAlue ImputatioN (REMAIN), to impute MVs in poor-quality streaming data. Instead of imputing MVs based on all the observed data, REMAIN first initializes the MV imputation model based on a-RANSAC which is capable of detecting and rejecting anomalies in an efficient manner, and then incrementally updates the model parameters upon the arrival of new data to support real-time MV imputation. As the correlations among attributes of the data may change over time in unforseenable ways, we devise a deterioration detection mechanism to capture the deterioration of the imputation model to further improve the imputation accuracy. Finally, we conduct an extensive evaluation on the proposed algorithms using real-world and synthetic datasets. Experimental results demonstrate that REMAIN achieves significantly higher imputation accuracy over existing solutions. Meanwhile, REMAIN improves up to one order of magnitude in time cost compared with existing approaches. 
    more » « less
  3. With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over $99%$ average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%. 
    more » « less
  4. User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep learning based user authentication scheme to accurately identify each individual user. Extensive experiments in two typical indoor environments, a university office and an apartment, are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% and 91% authentication accuracy with 11 subjects through walking and stationary activities, respectively. 
    more » « less
  5. The rapid pace of urbanization and socioeconomic development encourage people to spend more time together and therefore monitoring of human dynamics is of great importance, especially for facilities of elder care and involving multiple activities. Traditional approaches are limited due to their high deployment costs and privacy concerns (e.g., camera-based surveillance or sensor-attachment-based solutions). In this work, we propose to provide a fine-grained comprehensive view of human dynamics using existing WiFi infrastructures often available in many indoor venues. Our approach is low-cost and device-free, which does not require any active human participation. Our system aims to provide smart human dynamics monitoring through participant number estimation, human density estimation and walking speed and direction derivation. A semi-supervised learning approach leveraging the non-linear regression model is developed to significantly reduce training efforts and accommodate different monitoring environments. We further derive participant number and density estimation based on the statistical distribution of Channel State Information (CSI) measurements. In addition, people's walking speed and direction are estimated by using a frequency-based mechanism. Extensive experiments over 12 months demonstrate that our system can perform fine-grained effective human dynamic monitoring with over 90% accuracy in estimating participants number, density, and walking speed and direction at various indoor environments. 
    more » « less