skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jun S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 2, 2025
  2. The knockoff filter is a recent false discovery rate (FDR) control method for high-dimensional linear models. We point out that knockoff has three key components: ranking algorithm, augmented design, and symmetric statistic, and each component admits multiple choices. By considering various combinations of the three components, we obtain a collection of variants of knockoff. All these variants guarantee finite-sample FDR control, and our goal is to compare their power. We assume a Rare and Weak signal model on regression coeffi- cients and compare the power of different variants of knockoff by deriving explicit formulas of false positive rate and false negative rate. Our results provide new insights on how to improve power when controlling FDR at a targeted level. We also compare the power of knockoff with its propotype - a method that uses the same ranking algorithm but has access to an ideal threshold. The comparison reveals the additional price one pays by finding a data-driven threshold to control FDR. 
    more » « less
  3. Abstract The multiple-try Metropolis method is an interesting extension of the classical Metropolis–Hastings algorithm. However, theoretical understanding about its usefulness and convergence behavior is still lacking. We here derive the exact convergence rate for the multiple-try Metropolis Independent sampler (MTM-IS) via an explicit eigen analysis. As a by-product, we prove that an naive application of the MTM-IS is less efficient than using the simpler approach of “thinned” independent Metropolis–Hastings method at the same computational cost. We further explore more variants and find it possible to design more efficient algorithms by applying MTM to part of the target distribution or creating correlated multiple trials. 
    more » « less