skip to main content


Search for: All records

Creators/Authors contains: "Liu, Mingyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 26, 2025
  2. Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data. Although local data is not exposed directly, privacy concerns nonetheless exist as clients' sensitive information can be inferred from intermediate computations. Moreover, such information leakage accumulates substantially over time as the same data is repeatedly used during the iterative learning process. As a result, it can be particularly difficult to balance the privacy-accuracy trade-off when designing privacy-preserving FL algorithms. This paper introduces Upcycled-FL, a simple yet effective strategy that applies first-order approximation at every even round of model update. Under this strategy, half of the FL updates incur no information leakage and require much less computational and transmission costs. We first conduct the theoretical analysis on the convergence (rate) of Upcycled-FL and then apply two perturbation mechanisms to preserve privacy. Extensive experiments on both synthetic and real-world data show that the Upcycled-FL strategy can be adapted to many existing FL frameworks and consistently improve the privacy-accuracy trade-off 
    more » « less
    Free, publicly-accessible full text available July 26, 2025
  3. Abstract

    Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality—also referred to as the interdependent security games—and the Stackelberg game as a formalism to model a variety of attacker–defender scenarios. In this study, we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders.

     
    more » « less
  4. We consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative FL framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes.In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  5. We consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative FL framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes. In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications. 
    more » « less
    Free, publicly-accessible full text available March 24, 2025
  6. Free, publicly-accessible full text available February 22, 2025
  7. Free, publicly-accessible full text available December 6, 2024
  8. Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality – also referred to as the Interdependent Security (IDS) games – and the Stackelberg game as a formalism to model a variety of attacker-defender scenarios. In this study we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders. 
    more » « less
  9. We study the design of a class of incentive mechanisms that can effectively prevent cheating in a strategic classification and regression problem. A conventional strategic classification or regression problem is modeled as a Stackelberg game, or a principal-agent problem between the designer of a classifier (the principal) and individuals subject to the classifier's decisions (the agents), potentially from different demographic groups. The former benefits from the accuracy of its decisions, whereas the latter may have an incentive to game the algorithm into making favorable but erroneous decisions. While prior works tend to focus on how to design an algorithm to be more robust to such strategic maneuvering, this study focuses on an alternative, which is to design incentive mechanisms to shape the utilities of the agents and induce effort that genuinely improves their skills, which in turn benefits both parties in the Stackelberg game. Specifically, the principal and the mechanism provider (which could also be the principal itself) move together in the first stage, publishing and committing to a classifier and an incentive mechanism. The agents are (simultaneous) second movers and best respond to the published classifier and incentive mechanism. When an agent's strategic action merely changes its observable features, it hurts the performance of the algorithm. However, if the action leads to improvement in the agent's true label, it not only helps the agent achieve better decision outcomes, but also preserves the performance of the algorithm. We study how a subsidy mechanism can induce improvement actions, positively impact a number of social well-being metrics, such as the overall skill levels of the agents (efficiency) and positive or true positive rate differences between different demographic groups (fairness). 
    more » « less