skip to main content

Search for: All records

Creators/Authors contains: "Liu, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 2, 2023
  2. Free, publicly-accessible full text available December 1, 2022
  3. Aqueous redox flow batteries could provide viable grid-scale electrochemical energy storage for renewable energy because of their high-power performance, scalability, and safe operation ( 1 , 2 ). Redox-active organic molecules serve as the energy storage materials ( 2 , 3 ), but only very few organic molecules, such as viologen ( 4 , 5 ) and anthraquinone molecules ( 6 ), have demonstrated promising energy storage performance ( 2 ). Efforts continue to develop other families of organic molecules for flow battery applications that would have dense charge capacities and be chemically robust. On page 836 of this issue,more »Feng et al. ( 7 ) report a class of ingeniously designed 9-fluorenone (FL) molecules as high-performance, potentially low-cost organic anode electrolytes (anolytes) in aqueous organic redox flow batteries (see the figure, top). These FL anolytes not only display exceptional energy storage performance but also exhibit an unprecedented two-electron storage mechanism.« less
  4. Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg 2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over themore »entire sky. Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift. Methods. To identifyy the counterparts, we combined the results from two independent methods ( NWAY and ASTROMATCH ), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts. Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main sample and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available. Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts.« less
    Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available June 1, 2023
  6. Insects possess specific immune responses to protect themselves from different types of pathogens. Activation of immune cascades can inflict significant developmental costs on the surviving host. To characterize infection kinetics in a surviving host that experiences baculovirus inoculation, it is crucial to determine the timing of immune responses. Here, we investigated time-dependent immune responses and developmental costs elicited by inoculations from each of two wild-type baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Helicoverpa zea single nucleopolyhedrovirus (HzSNPV), in their common host H. zea. As H. zea is a semi-permissive host of AcMNPV and fully permissive to HzSNPV, we hypothesized theremore »are differential immune responses and fitness costs associated with resisting infection by each virus species. Newly molted 4th-instar larvae that were inoculated with a low dose (LD15) of either virus showed significantly higher hemolymph FAD-glucose dehydrogenase (GLD) activities compared to the corresponding control larvae. Hemolymph phenoloxidase (PO) activity, protein concentration and total hemocyte numbers were not increased, but instead were lower than in control larvae at some time points post-inoculation. Larvae that survived either virus inoculation exhibited reduced pupal weight; survivors inoculated with AcMNPV grew slower than the control larvae, while survivors of HzSNPV pupated earlier than control larvae. Our results highlight the complexity of immune responses and fitness costs associated with combating different baculoviruses.« less