It is widely accepted that Arctic amplification (AA)—enhanced Arctic warming relative to global warming—will increasingly moderate cold-air outbreaks (CAOs) to the midlatitudes. Yet, some recent studies also argue that AA over the last three decades to the rest of the present century may contribute to more frequent severe winter weather including disruptive cold spells. To prepare society for future extremes, it is necessary to resolve whether AA and severe midlatitude winter weather are coincidental or physically linked. Severe winter weather events in the northern continents are often related to a range of stratospheric polar vortex (SPV) configurations and atmospheric blocking, but these dynamical drivers are complex and still not fully understood. Here we review recent research advances and paradigms including a nonlinear theory of atmospheric blocking that helps to explain the location, timing and duration of AA/midlatitude weather connections, studies of the polar vortex’s zonal asymmetric and intra-seasonal variations, its southward migration over continents, and its surface impacts. We highlight novel understanding of SPV variability—polar vortex stretching and a stratosphere–troposphere oscillation—that have remained mostly hidden in the predominant research focus on sudden stratospheric warmings. A physical explanation of the two-way vertical coupling process between the polar vortex and blocking highs, taking into account local surface conditions, remains elusive. We conclude that evidence exists for tropical preconditioning of Arctic-midlatitude climate linkages. Recent research using very large-ensemble climate modelling provides an emerging opportunity to robustly quantify internal atmospheric variability when studying the potential response of midlatitude CAOs to AA and sea-ice loss.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Winter Arctic sea-ice concentration (SIC) decline plays an important role in Arctic amplification which, in turn, influences Arctic ecosystems, midlatitude weather and climate. SIC over the Barents-Kara Seas (BKS) shows large interannual variations, whose origin is still unclear. Here we find that interannual variations in winter BKS SIC have significantly strengthened in recent decades likely due to increased amplitudes of the El Niño-Southern Oscillation (ENSO) in a warming climate. La Niña leads to enhanced Atlantic Hadley cell and a positive phase North Atlantic Oscillation-like anomaly pattern, together with concurring Ural blocking, that transports Atlantic ocean heat and atmospheric moisture toward the BKS and promotes sea-ice melting via intensified surface warming. The reverse is seen during El Niño which leads to weakened Atlantic poleward transport and an increase in the BKS SIC. Thus, interannual variability of the BKS SIC partly originates from ENSO via the Atlantic pathway.more » « less
-
Abstract Summer heatwaves over Europe, which can cause many deaths and severe damage, have become increasingly frequent over central and eastern Europe and western Russia in recent decades. In this paper, we estimate the contributions of the warming due to increased greenhouse gases (GHG) and nonlinear variations correlated with the Atlantic Multidecadal Oscillation (AMO) to the observed heatwave trend over Europe during 1980–2021, when the GHG‐induced warming over Europe exhibits a linear trend. It is found that GHG‐induced warming contributes to ∼57% of the European heatwave trend over 1980–2021, while the cold‐to‐warm phase shift of the AMO‐like variations accounts for ∼43% of the trend via the intensification of midlatitude North Atlantic jet. The recent trend of heatwaves over western and northern Europe is mainly due to GHG‐induced warming, while that over central and eastern Europe and western Russia is primarily related to the combined effect of the AMO‐like variations and GHG‐induced warming. To some extent, GHG‐induced warming is an amplifier of the increasing trend of recent AMO‐related European heatwaves. Moreover, European blocking (Ural blocking, UB) is shown to contribute to 55% (42%) of the AMO‐related heatwave trend via the influence of midlatitude North Atlantic jet. In the presence of a strong North Atlantic jet during the recent warm AMO phase, UB events concurrent with positive‐phase North Atlantic Oscillation can cause intense, persistent and widespread heatwaves over Europe such as that observed in the summer of 2022.
-
null (Ed.)Abstract Winter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO − ) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO + ), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO − (NAO + ) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO + has a larger component projecting onto the SAT WWCE dipole during the La Niña winter than during the El Niño winter because a more zonal wave train is formed. Strong North American SAT WWCE dipoles and enhanced projections of PB-NAO + events onto the SAT WWCE dipole component are also readily seen for the positive North Pacific mode. The North Pacific mode seems to play a bigger role in the North American SAT variability than ENSO.more » « less
-
Abstract In this paper, reanalysis data are first analyzed to reveal that the individual negative (positive)-phase Pacific–North American pattern (PNA) or PNA− (PNA+) has a lifetime of 10–20 days, is characterized by strong (weak) westerly jet stream meanders, and exhibits clear wave train structures, whereas the PNA− with rapid retrogression tends to have longer lifetime and larger amplitude than the PNA+ with slow retrogression. In contrast, the wave train structure of the North Atlantic Oscillation (NAO) is less distinct, and the positive (negative)-phase NAO shows eastward (westward) movement around a higher latitude than the PNA. Moreover, it is found that the PNA wave train occurs under a larger background meridional potential vorticity gradient (PVy) over the North Pacific than that over the North Atlantic for the NAO. A unified nonlinear multiscale interaction (UNMI) model is then developed to explain why the PNA as a nonlinear wave packet has such characteristics and its large difference from the NAO. The model results reveal that the larger background PVy for the PNA (due to its location at lower latitudes) leads to its larger energy dispersion and weaker nonlinearity than the NAO, thus explaining why the PNA (NAO) is largely a linear (nonlinear) process with a strong (weak) wave train structure, though it is regarded as a nonlinear initial-value problem. The smaller PVy for the PNA− than for the PNA+ leads to lower energy dispersion and stronger nonlinearity for PNA−, which allows it to maintain larger amplitude and have a longer lifetime than the PNA+. Thus, the difference in the background PVy is responsible for the asymmetry between the two phases of PNA and the difference between the PNA and NAO.more » « less
-
Using daily reanalysis data from 1979 to 2015, this paper examines the impact of winter Ural blocking (UB) on winter Arctic sea ice concentration (SIC) change over the Barents and Kara Seas (BKS). A case study of the sea ice variability in the BKS in the 2015/16 and 2016/17 winters is first presented to establish a link between the BKS sea ice variability and UB events. Then the UB events are classified into quasi-stationary (QUB), westward-shifting (WUB), and eastward-shifting (EUB) UB types. It is found that the frequency of the QUB events increases significantly during 1999–2015, whereas the WUB events show a decreasing fre- quency trend during 1979–2015. Moreover, it is shown that the variation of the BKS-SIC is related to downward infrared radiation (IR) and surface sensible and latent heat flux changes due to different zonal movements of the UB. Calculations show that the downward IR is the main driver of the BKS-SIC decline for QUB events, while the downward IR and surface sensible heat flux make comparable contributions to the BKS-SIC variation for WUB and EUB events. The SIC decline peak lags the QUB and EUB peaks by about 3 days, though QUB and EUB require lesser prior SIC. The QUB gives rise to the largest SIC decline likely because of its longer persistence, whereas the BKS-SIC decline is relatively weak for the EUB. The WUB is found to cause a SIC decline during its growth phase and an increase during its decay phase. Thus, the zonal movement of the UB has an important impact on the SIC variability in BKS.more » « less