skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Unified Nonlinear Multiscale Interaction Model of Pacific–North American Teleconnection Patterns
Abstract In this paper, reanalysis data are first analyzed to reveal that the individual negative (positive)-phase Pacific–North American pattern (PNA) or PNA− (PNA+) has a lifetime of 10–20 days, is characterized by strong (weak) westerly jet stream meanders, and exhibits clear wave train structures, whereas the PNA− with rapid retrogression tends to have longer lifetime and larger amplitude than the PNA+ with slow retrogression. In contrast, the wave train structure of the North Atlantic Oscillation (NAO) is less distinct, and the positive (negative)-phase NAO shows eastward (westward) movement around a higher latitude than the PNA. Moreover, it is found that the PNA wave train occurs under a larger background meridional potential vorticity gradient (PVy) over the North Pacific than that over the North Atlantic for the NAO. A unified nonlinear multiscale interaction (UNMI) model is then developed to explain why the PNA as a nonlinear wave packet has such characteristics and its large difference from the NAO. The model results reveal that the larger background PVy for the PNA (due to its location at lower latitudes) leads to its larger energy dispersion and weaker nonlinearity than the NAO, thus explaining why the PNA (NAO) is largely a linear (nonlinear) process with a strong (weak) wave train structure, though it is regarded as a nonlinear initial-value problem. The smaller PVy for the PNA− than for the PNA+ leads to lower energy dispersion and stronger nonlinearity for PNA−, which allows it to maintain larger amplitude and have a longer lifetime than the PNA+. Thus, the difference in the background PVy is responsible for the asymmetry between the two phases of PNA and the difference between the PNA and NAO.  more » « less
Award ID(s):
1743738
PAR ID:
10176356
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
4
ISSN:
0022-4928
Page Range / eLocation ID:
1387 to 1414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Winter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO − ) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO + ), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO − (NAO + ) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO + has a larger component projecting onto the SAT WWCE dipole during the La Niña winter than during the El Niño winter because a more zonal wave train is formed. Strong North American SAT WWCE dipoles and enhanced projections of PB-NAO + events onto the SAT WWCE dipole component are also readily seen for the positive North Pacific mode. The North Pacific mode seems to play a bigger role in the North American SAT variability than ENSO. 
    more » « less
  2. Abstract We investigate how the ocean responds to 10-yr persistent surface heat flux forcing over the subpolar North Atlantic (SPNA) associated with the observed winter NAO in three CMIP6-class coupled models. The experiments reveal a broadly consistent ocean response to the imposed NAO forcing. Positive NAO forcing produces anomalously dense water masses in the SPNA, increasing the southward lower (denser) limb of the Atlantic meridional overturning circulation (AMOC) in density coordinates. The southward propagation of the anomalous dense water generates a zonal pressure gradient overlying the models’ North Atlantic Current that enhances the upper (lighter) limb of the density-space AMOC, increasing the heat and salt transport into the SPNA. However, the amplitude of the thermohaline process response differs substantially between the models. Intriguingly, the anomalous dense-water formation is not primarily driven directly by the imposed flux anomalies, but rather dominated by changes in isopycnal outcropping area and associated changes in surface water mass transformation (WMT) due to the background surface heat fluxes. The forcing initially alters the outcropping area in dense-water formation regions, but WMT due to the background surface heat fluxes through anomalous outcropping area decisively controls the total dense-water formation response and can explain the intermodel amplitude difference. Our study suggests that coupled models can simulate consistent mechanisms and spatial patterns of decadal SPNA variability when forced with the same anomalous buoyancy fluxes, but the amplitude of the response depends on the background states of the models. 
    more » « less
  3. The Pacific–North American (PNA) teleconnection pattern is one of the prominent atmospheric circulation modes in the extratropical Northern Hemisphere, and its seasonal to interannual predictability is suggested to originate from El Niño–Southern Oscillation (ENSO). Intriguingly, the PNA teleconnection pattern exhibits variance at near-annual frequencies, which is related to a rapid phase reversal of the PNA pattern during ENSO years, whereas the ENSO sea surface temperature (SST) anomalies in the tropical Pacific are evolving much slower in time. This distinct seasonal feature of the PNA pattern can be explained by an amplitude modulation of the interannual ENSO signal by the annual cycle (i.e., the ENSO combination mode). The ENSO-related seasonal phase transition of the PNA pattern is reproduced well in an atmospheric general circulation model when both the background SST annual cycle and ENSO SST anomalies are prescribed. In contrast, this characteristic seasonal evolution of the PNA pattern is absent when the tropical Pacific background SST annual cycle is not considered in the modeling experiments. The background SST annual cycle in the tropical Pacific modulates the ENSO-associated tropical Pacific convection response, leading to a rapid enhancement of convection anomalies in winter. The enhanced convection results in a fast establishment of the large-scale PNA teleconnection during ENSO years. The dynamics of this ENSO–annual cycle interaction fills an important gap in our understanding of the seasonally modulated PNA teleconnection pattern during ENSO years. 
    more » « less
  4. Abstract During boreal winter, the climatological stationary wave plays a key role in the poleward transport of heat in mid- and high latitudes. Latent heating is an important driver of boreal-winter stationary waves. In this study, the temporal relationship between tropical and extratropical heating and transient–stationary wave interference is investigated by performing observational data analyses and idealized model experiments. In line with stationary wave theory, the observed heating anomaly fields during constructive interference events have a spatial structure that reinforces the zonal asymmetry of the climatological heating field. The observational analysis shows that about 10 days prior to constructive interference events, tropical heating anomalies are established, and within 1 week North Pacific and then North Atlantic heating anomalies follow. This result suggests that constructive interference involves a heating–circulation relay: tropical latent heating drives circulation anomalies that transport moisture in such a manner as to increase latent heating in the North Pacific; circulation anomalies driven by this North Pacific heating similarly lead to enhanced latent heating in the North Atlantic. This heating–circulation relay picture is supported by initial-value model calculations in which the observed heating anomalies are used to drive model circulations. Our results also show that the constructive interference driven by both tropical and extratropical diabatic heating generates a relatively large-amplitude wave in high latitudes and leads to particularly prolonged Arctic warming episodes, whereas when both the tropical and extratropical diabatic heating are weak, constructive interference is confined to midlatitudes and does not lead to Arctic warming. 
    more » « less
  5. Abstract During 2013–16 and 2018–22, marine heatwaves (MHWs) occurred in the North Pacific, exhibiting similar extensive coverage, lengthy duration, and significant intensity but with different warming centers. The warming center of the 2013–16 event was in the Gulf of Alaska (GOA), while the 2018–22 event had warming centers in both the GOA and the coast of Japan (COJ). Our observational analysis indicates that these two events can be considered as two MHW variants induced by a basinwide MHW conditioning mode in the North Pacific. Both variants were driven thermodynamically by atmospheric wave trains propagating from the tropical Pacific to the North Pacific, within the conditioning mode. The origin and propagating path of these wave trains play a crucial role in determining the specific type of MHW variant. When a stronger wave train originates from the tropical central (western) Pacific, it leads to the GOA (COJ) variant. The cross-basin nature of the wave trains enables the two MHW variants to be accompanied by a tripolar pattern of sea surface temperature anomalies in the North Atlantic but with opposite phases. The association of these two MHW variants with the Atlantic Ocean also manifests in the decadal variations of their occurrence. Both variants tend to occur more frequently during the positive phase of the Atlantic multidecadal oscillation but less so during the negative phase. This study underscores the importance of cross-basin associations between the North Pacific and North Atlantic in shaping the dynamics of North Pacific MHWs. 
    more » « less