Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is disagreement among cognitive scientists as to whether a key computational framework – the Simple Recurrent Network (SRN; Elman, 1990, 1991) – is a feedforward system. SRNs have been essential tools in advancing theories of learning, development, and processing in cognitive science for more than three decades. If SRNs were feedforward systems, there would be pervasive theoretical implications: Anything an SRN can do would therefore be explainable without interaction (feedback). However, despite claims that SRNs (and by extension recurrent neural networks more generally) are feedforward (Norris, 1993), this is not the case. Feedforward networks by definition are acyclic graphs; they contain no loops. SRNs contain loops – from hidden units back to hidden units with a time delay – and are therefore cyclic graphs. As we demonstrate, they are interactive in the sense normally implied for networks with feedback connections between layers: In an SRN, bottom-up inputs are inextricably mixed with previous model-internal computations. Inputs are transmitted to hidden units by multiplying them by input-to-hidden weights. However, hidden units simultaneously receive their own previous activations as input via hidden-to-hidden connections with a 1-step time delay (typically via context units). These are added to the input-to-hidden values, and the sums are transformed by an activation function. Thus, bottom-up inputs are mixed with the products of potentially many preceding transformations of inputs and model-internal states. We discuss theoretical implications through a key example from psycholinguistics where the status of SRNs as feedforward or interactive has crucial ramifications.more » « lessFree, publicly-accessible full text available November 13, 2025
-
Abstract We recently reported strong, replicable (i.e., replicated) evidence forlexically mediated compensation for coarticulation(LCfC; Luthra et al., 2021), whereby lexical knowledge influences a prelexical process. Critically, evidence for LCfC provides robust support forinteractivemodels of cognition that includetop‐down feedbackand is inconsistent withautonomousmodels that allow only feedforward processing. McQueen, Jesse, and Mitterer (2023) offer five counter‐arguments against our interpretation; we respond to each of those arguments here and conclude that top‐down feedback provides the most parsimonious explanation of extant data.more » « less
-
Listeners have many sources of information available in interpreting speech. Numerous theoretical frameworks and paradigms have established that various constraints impact the processing of speech sounds, but it remains unclear how listeners might simultane-ously consider multiple cues, especially those that differ qualitatively (i.e., with respect to timing and/or modality) or quantita-tively (i.e., with respect to cue reliability). Here, we establish that cross-modal identity priming can influence the interpretation of ambiguous phonemes (Exp. 1, N = 40) and show that two qualitatively distinct cues – namely, cross-modal identity priming and auditory co-articulatory context – have additive effects on phoneme identification (Exp. 2, N = 40). However, we find no effect of quantitative variation in a cue – specifically, changes in the reliability of the priming cue did not influence phoneme identification (Exp. 3a, N = 40; Exp. 3b, N = 40). Overall, we find that qualitatively distinct cues can additively influence phoneme identifica-tion. While many existing theoretical frameworks address constraint integration to some degree, our results provide a step towards understanding how information that differs in both timing and modality is integrated in online speech perception.more » « less
-
Whether top-down feedback modulates perception has deep implications for cognitive theories. Debate has been vigorous in the domain of spoken word recognition, where competing computational models and agreement on at least one diagnostic experimental paradigm suggest that the debate may eventually be resolvable. Norris and Cutler (2021) revisit arguments against lexical feedback in spoken word recognition models. They also incorrectly claim that recent computational demonstrations that feedback promotes accuracy and speed under noise (Magnuson et al., 2018) were due to the use of the Luce choice rule rather than adding noise to inputs (noise was in fact added directly to inputs). They also claim that feedback cannot improve word recognition because feedback cannot distinguish signal from noise. We have two goals in this paper. First, we correct the record about the simulations of Magnuson et al. (2018). Second, we explain how interactive activation models selectively sharpen signals via joint effects of feedback and lateral inhibition that boost lexically-coherent sublexical patterns over noise. We also review a growing body of behavioral and neural results consistent with feedback and inconsistent with autonomous (non-feedback) architectures, and conclude that parsimony supports feedback. We close by discussing the potential for synergy between autonomous and interactive approaches.more » « less
-
Abstract Though the right hemisphere has been implicated in talker processing, it is thought to play a minimal role in phonetic processing, at least relative to the left hemisphere. Recent evidence suggests that the right posterior temporal cortex may support learning of phonetic variation associated with a specific talker. In the current study, listeners heard a male talker and a female talker, one of whom produced an ambiguous fricative in /s/-biased lexical contexts (e.g., epi?ode) and one who produced it in /∫/-biased contexts (e.g., friend?ip). Listeners in a behavioral experiment (Experiment 1) showed evidence of lexically guided perceptual learning, categorizing ambiguous fricatives in line with their previous experience. Listeners in an fMRI experiment (Experiment 2) showed differential phonetic categorization as a function of talker, allowing for an investigation of the neural basis of talker-specific phonetic processing, though they did not exhibit perceptual learning (likely due to characteristics of our in-scanner headphones). Searchlight analyses revealed that the patterns of activation in the right superior temporal sulcus (STS) contained information about who was talking and what phoneme they produced. We take this as evidence that talker information and phonetic information are integrated in the right STS. Functional connectivity analyses suggested that the process of conditioning phonetic identity on talker information depends on the coordinated activity of a left-lateralized phonetic processing system and a right-lateralized talker processing system. Overall, these results clarify the mechanisms through which the right hemisphere supports talker-specific phonetic processing.more » « less
-
null (Ed.)Abstract Neurobiological models of speech perception posit that both left and right posterior temporal brain regions are involved in the early auditory analysis of speech sounds. However, frank deficits in speech perception are not readily observed in individuals with right hemisphere damage. Instead, damage to the right hemisphere is often associated with impairments in vocal identity processing. Herein lies an apparent paradox: The mapping between acoustics and speech sound categories can vary substantially across talkers, so why might right hemisphere damage selectively impair vocal identity processing without obvious effects on speech perception? In this review, I attempt to clarify the role of the right hemisphere in speech perception through a careful consideration of its role in processing vocal identity. I review evidence showing that right posterior superior temporal, right anterior superior temporal, and right inferior / middle frontal regions all play distinct roles in vocal identity processing. In considering the implications of these findings for neurobiological accounts of speech perception, I argue that the recruitment of right posterior superior temporal cortex during speech perception may specifically reflect the process of conditioning phonetic identity on talker information. I suggest that the relative lack of involvement of other right hemisphere regions in speech perception may be because speech perception does not necessarily place a high burden on talker processing systems, and I argue that the extant literature hints at potential subclinical impairments in the speech perception abilities of individuals with right hemisphere damage.more » « less