skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lyu, Siwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multi-block minimax bilevel optimization has been studied recently due to its great potential in multi-task learning, robust machine learning, and few-shot learning. However, due to the complex three-level optimization structure, existing algorithms often suffer from issues such as high computing costs due to the second-order model derivatives or high memory consumption in storing all blocks’ parameters. In this paper, we tackle these challenges by proposing two novel fully first-order algorithms named FOSL and MemCS. FOSL features a fully single-loop structure by updating all three variables simultaneously, and MemCS is a memory-efficient double-loop algorithm with cold-start initialization. We provide a comprehensive convergence analysis for both algorithms under full and partial block participation, and show that their sample complexities match or outperform those of the same type of methods in standard bilevel optimization. We evaluate our methods in two applications: the recently proposed multi-task deep AUC maximization and a novel rank-based robust meta-learning. Our methods consistently improve over existing methods with better performance over various datasets. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  2. Language-guided human motion synthesis has been a challenging task due to the inherent complexity and diversity of human behaviors. Previous methods face limitations in generalization to novel actions, often resulting in unrealistic or incoherent motion sequences. In this paper, we propose ATOM (ATomic mOtion Modeling) to mitigate this problem, by decomposing actions into atomic actions, and employing a curriculum learning strategy to learn atomic action composition. First, we disentangle complex human motions into a set of atomic actions during learning, and then assemble novel actions using the learned atomic actions, which offers better adaptability to new actions. Moreover, we introduce a curriculum learning training strategy that leverages masked motion modeling with a gradual increase in the mask ratio, and thus facilitates atomic action assembly. This approach mitigates the overfitting problem commonly encountered in previous methods while enforcing the model to learn better motion representations. We demonstrate the effectiveness of ATOM through extensive experiments, including text-to-motion and action-to-motion synthesis tasks. We further illustrate its superiority in synthesizing plausible and coherent text-guided human motion sequences. 
    more » « less
  3. null (Ed.)
    Sophisticated generative adversary network (GAN) models are now able to synthesize highly realistic human faces that are difficult to discern from real ones visually. In this work, we show that GAN synthesized faces can be exposed with the inconsistent corneal specular highlights between two eyes. The inconsistency is caused by the lack of physical/physiological constraints in the GAN models. We show that such artifacts exist widely in high-quality GAN synthesized faces and further describe an automatic method to extract and compare corneal specular highlights from two eyes. Qualitative and quantitative evaluations of our method suggest its simplicity and effectiveness in distinguishing GAN synthesized faces. 
    more » « less
  4. null (Ed.)