skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Chaoxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Silicon microring resonators are being recently used for high-brightness and efficient photon-pair generation at telecommunication wavelengths. Here, based on detailed theoretical and numerical modeling, we study the impact on pair generation of increasing the optical pump power, which generally causes nonlinear impairments such as free-carrier and two-photon absorption in silicon micro-resonators. Contrary to expectation, the pair generation properties of such devices may seem to be preserved at increasing pump powers, although not better than at a moderate pump power. These results suggest that silicon microrings can be used for pair generation over a wide range of pump powers, which may benefit applications in remotely pumped architectures, where the pump level might not be known a priori. 
    more » « less
  2. Photon-pair generation at telecommunication wavelengths using high-quality silicon microring resonators is an active area of research. Here, we report on significant progress towards the ultimate goal of an integrated silicon microchip for bright generation of photon pairs with multiple stages of tunable optical filtering on the same chip. A high pair generation brightness of 6.5×1010pairs/s/mW2/nm is achieved. The resonance of the high-Q silicon microring resonator can be monitored using a high dynamic range readout of a photocurrent in an all-silicon p-i-n diode fabricated across the waveguide cross-section, which is used to align the ring resonance to the passbands or stopbands of the filters. 
    more » « less
  3. Photon-pair generation is shown using periodically-poled thin-film lithium niobate waveguides, with coincidences-to-accidentals ratio CAR>67,000 at 41kHz pairs rate, and heralded single-photon generation with g(2)(0)<0.05 at 860kHz herald rate. 
    more » « less
  4. We report photon pairs and heralded single photons generated at 1310 nm wavelengths using silicon photonics technology, demonstrating that comparable performance could be achieved when a silicon microring resonator was pumped either by a desktop laser instrument or by an electrically injected, room-temperature hybrid silicon laser. Measurements showed that 130 kilo-coincidence-counts per second pair rates could be generated, with coincidences-to-accidentals ratio approximately 100 at about 0.34 mW optical pump power and anti-bunching upon heralding with second-order intensity correlation g(2)(0) = 0.06 at about 0.9 mW optical pump power. These results suggest that hybrid silicon lasers, which are ultra-compact and wafer-scale manufacturable, could be used in place of packaged, stand-alone lasers for generating photon pairs at data communication wavelengths and enable large-scale, cost-effective manufacturing of integrated sources for quantum communications and computing. 
    more » « less