skip to main content


Search for: All records

Creators/Authors contains: "Ma, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Live Jurkat cells were trapped by dielectrophoresis on a coplanar waveguide and the resulted changes in its reflection and transmission coefficients were measured from 900 Hz to 40 GHz. The measurement confirms that the decrease of nucleus size in a cell increases its impacts on both the reflection and transmission coefficients. Being fast, compact and label free, broadband electrical sensing may be used to detect other changes of the nucleus morphology and DNA content, which could be useful for cancer diagnosis. 
    more » « less
  2. Tsunami generation from earthquake-induced seafloor deformations has long been recognized as a major hazard to coastal areas. Strike-slip faulting has generally been considered insufficient for triggering large tsunamis, except through the generation of submarine landslides. Herein, we demonstrate that ground motions due to strike-slip earthquakes can contribute to the generation of large tsunamis (>1 m), under rather generic conditions. To this end, we developed a computational framework that integrates models for earthquake rupture dynamics with models of tsunami generation and propagation. The three-dimensional time-dependent vertical and horizontal ground motions from spontaneous dynamic rupture models are used to drive boundary motions in the tsunami model. Our results suggest that supershear ruptures propagating along strike-slip faults, traversing narrow and shallow bays, are prime candidates for tsunami generation. We show that dynamic focusing and the large horizontal displacements, characteristic of strike-slip earthquakes on long faults, are critical drivers for the tsunami hazard. These findings point to intrinsic mechanisms for sizable tsunami generation by strike-slip faulting, which do not require complex seismic sources, landslides, or complicated bathymetry. Furthermore, our model identifies three distinct phases in the tsunamic motion, an instantaneous dynamic phase, a lagging coseismic phase, and a postseismic phase, each of which may affect coastal areas differently. We conclude that near-source tsunami hazards and risk from strike-slip faulting need to be re-evaluated.

     
    more » « less
  3. null (Ed.)
    Single-connection in situ calibration using biocompatible solutions is demonstrated in single-cell sensing from 0.5 to 9 GHz. The sensing is based on quickly trapping and releasing a live cell by dielectrophoresis on a coplanar transmission line with a little protrusion in one of its ground electrodes. The same transmission line is used as the calibration standard when covered by various solutions of known permittivities. The results show that the calibration technique may be precise enough to differentiate cells of different nucleus sizes, despite the measured difference being less than 0.01 dB in the deembedded scattering parameters. With better accuracy and throughput, the calibration technique may allow broadband electrical sensing of live cells in a high-throughput cytometer. 
    more » « less
  4. null (Ed.)
  5. When a colloidal suspension is dried, capillary pressure may overwhelm repulsive electrostatic forces, assembling aggregates that are out of thermal equilibrium. This poorly understood process confers cohesive strength to many geological and industrial materials. Here we observe evaporation-driven aggregation of natural and synthesized particulates, probe their stability under rewetting, and measure bonding strength using an atomic force microscope. Cohesion arises at a common length scale (∼5 μm), where interparticle attractive forces exceed particle weight. In polydisperse mixtures, smaller particles condense within shrinking capillary bridges to build stabilizing “solid bridges” among larger grains. This dynamic repeats across scales, forming remarkably strong, hierarchical clusters, whose cohesion derives from grain size rather than mineralogy. These results may help toward understanding the strength and erodibility of natural soils, and other polydisperse particulates that experience transient hydrodynamic forces. 
    more » « less
  6. Recently, ultra-wideband electrical sensing has been developed as a fast, compact, and label-free technique to characterize a biological cell noninvasively and to extract its intracellular properties. This paper presents, for the first time, the use of the technique to sense the change in the nucleus size of a live Jurkat cell. The experiment is based on trapping and detrapping the cell by dielectrophoresis on a coplanar waveguide and measuring the return and insertion losses due to the presence of the cell from 9 kHz to 9 GHz. The results have been validated by traditional fluorescence microscopy. In the future, by extending the technique to detect changes in nucleus shape and DNA content, it could be used to distinguish cancerous cells from normal cells, for example. 
    more » « less