skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacIntyre, Sally"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Floodplain lakes are widespread and ecologically important throughout tropical river systems, however data are rare that describe how temporal variations in hydrological, meteorological and optical conditions moderate stratification and mixing in these shallow lakes. Using time series measurements of meteorology and water‐column temperatures from 17 several day campaigns spanning two hydrological years in a representative Amazon floodplain lake, we calculated surface energy fluxes and thermal stratification, and applied and evaluated a 3‐dimensional hydrodynamic model. The model successfully simulated diel cycles in thermal structure characterized by buoyancy frequency, depth of the actively mixing layer, and other terms associated with the surface energy budget. Diurnal heating with strong stratification and nocturnal mixing were common; despite considerable heat loss at night, the strong stratification during the day meant that mixing only infrequently extended to the bottom at night. Simulations indicated that the diurnal thermocline up and downwelled creating lake‐wide differences in near‐surface temperatures and mixing depths. Infrequent full mixing creates conditions conducive to anoxia in these shallow lakes given their warm temperatures. 
    more » « less
  2. Abstract The CO2flux () from lakes to the atmosphere is a large component of the global carbon cycle and depends on the air–water CO2concentration gradient (ΔCO2) and the gas transfer velocity (k). Both ΔCO2andkcan vary on multiple timescales and understanding their contributions to is important for explaining variability in fluxes and developing optimal sampling designs. We measured and ΔCO2and derivedkfor one full ice‐free period in 18 lakes using floating chambers and estimated the contributions of ΔCO2andkto variability. Generally,kcontributed more than ΔCO2to short‐term (1–9 d) variability. With increased temporal period, the contribution ofkto variability decreased, and in some lakes resulted in ΔCO2contributing more thankto variability over the full ice‐free period. Increased contribution of ΔCO2to variability over time occurred across all lakes but was most apparent in large‐volume southern‐boreal lakes and in deeper (> 2 m) parts of lakes, whereaskwas linked to variability in shallow waters. Accordingly, knowing the variability of bothkand ΔCO2over time and space is needed for accurate modeling of from these variables. We conclude that priority in assessments should be given to direct measurements of at multiple sites when possible, or otherwise from spatially distributed measurements of ΔCO2combined withk‐models that incorporate spatial variability of lake thermal structure and meteorology. 
    more » « less
  3. null (Ed.)
  4. Abstract. Methane (CH4) emissions from the boreal and arcticregion are globally significant and highly sensitive to climate change.There is currently a wide range in estimates of high-latitude annualCH4 fluxes, where estimates based on land cover inventories andempirical CH4 flux data or process models (bottom-up approaches)generally are greater than atmospheric inversions (top-down approaches). Alimitation of bottom-up approaches has been the lack of harmonizationbetween inventories of site-level CH4 flux data and the land coverclasses present in high-latitude spatial datasets. Here we present acomprehensive dataset of small-scale, surface CH4 flux data from 540terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakesand ponds), compiled from 189 studies. The Boreal–Arctic Wetland and LakeMethane Dataset (BAWLD-CH4) was constructed in parallel with acompatible land cover dataset, sharing the same land cover classes to enablerefined bottom-up assessments. BAWLD-CH4 includes information onsite-level CH4 fluxes but also on study design (measurement method,timing, and frequency) and site characteristics (vegetation, climate,hydrology, soil, and sediment types, permafrost conditions, lake size anddepth, and our determination of land cover class). The different land coverclasses had distinct CH4 fluxes, resulting from definitions that wereeither based on or co-varied with key environmental controls. Fluxes ofCH4 from terrestrial ecosystems were primarily influenced by watertable position, soil temperature, and vegetation composition, while CH4fluxes from aquatic ecosystems were primarily influenced by watertemperature, lake size, and lake genesis. Models could explain more of thebetween-site variability in CH4 fluxes for terrestrial than aquaticecosystems, likely due to both less precise assessments of lake CH4fluxes and fewer consistently reported lake site characteristics. Analysisof BAWLD-CH4 identified both land cover classes and regions within theboreal and arctic domain, where future studies should be focused, alongsidemethodological approaches. Overall, BAWLD-CH4 provides a comprehensivedataset of CH4 emissions from high-latitude ecosystems that are usefulfor identifying research opportunities, for comparison against new fielddata, and model parameterization or validation. BAWLD-CH4 can bedownloaded from https://doi.org/10.18739/A2DN3ZX1R (Kuhn et al., 2021). 
    more » « less
  5. null (Ed.)
    The hydrodynamics within small boreal lakes have rarely been studied, yet knowing whether turbulence at the air-water interface and in the water column scales with metrics developed elsewhere is essential for computing metabolism and fluxes of climate-forcing trace gases. We instrumented a humic, 4.7 ha, boreal lake with 2 meteorological stations, 3 thermistor arrays, an infra-red (IR) camera to quantify surface divergence, obtained turbulence as dissipation rate of turbulent kinetic energy (ε) using an acoustic Doppler velocimeter and a temperature-gradient microstructure profiler, and conducted chamber measurements for short periods to obtain fluxes and gas transfer velocities (k). Near-surface ε varied from 10-8 m2 s-3 to 10-6 m2 s-3 for the 0 to 4 m s-1 winds and followed predictions from Monin-Obukhov similarity theory. The coefficient of eddy diffusivity in the mixed layer was up to 10-3 m2 s-1 on the windiest afternoons, an order of magnitude less other afternoons, and near molecular at deeper depths. The upper thermocline upwelled when Lake numbers (LN) dropped below 4 facilitating vertical and horizontal exchange. k computed from a surface renewal model using ε agreed with values from chambers and surface divergence and increased linearly with wind speed. Diurnal thermoclines formed on sunny days when winds were < 3 m s-1, a condition that can lead to elevated near-surface ε and k. Results extend scaling approaches developed in the laboratory and for larger water bodies, illustrate turbulence and k are greater than expected in small wind-sheltered lakes, and provide new equations to quantify fluxes. 
    more » « less
  6. Abstract Mountain lakes experience extreme interannual climate variation as well as rapidly warming air temperatures, making them ideal systems to understand lake‐climate responses. Snowpack and water temperature are highly correlated in mountain lakes, but we lack a complete understanding of underlying mechanisms. Motivated by predicted declines in snowfall with future temperature increases, we investigated how surface heat fluxes and lake warming responded to variation in snowpack, ice‐off, and summer weather patterns in a high elevation lake in the Sierra Nevada, California. Ice‐off timing determined the phenology of lake exposure to solar radiation, and was the dominant mechanism linking snowpack to lake temperature. The relative importance of heat loss fluxes (longwave radiation, latent and sensible heat exchange) varied among wet and dry years. Declines in snowpack and ice cover in mountain systems will reduce variability in lake thermal responses and increase the responsiveness of lake warming to atmospheric forcing. 
    more » « less