skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mattei, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We introduce Flexible Representative Democracy (FRD), a novel hybrid of Representative Democracy and Direct Democracy in which voters can alter the issue-dependent weights of a set of elected representatives. In line with the literature on Interactive Democracy, our model allows the voters to actively determine the degree to which the system is direct versus representative. However, unlike Liquid Democracy, Flexible Representative Democracy uses strictly non-transitive delegations, making delegation cycles impossible, and maintains a fixed set of accountable, elected representatives. We present Flexible Representative Democracy and analyze it using a computational approach with issues that are binary and symmetric. We compare the outcomes of various voting systems using Direct Democracy with majority voting as an ideal baseline. First, we demonstrate the shortcomings of Representative Democracy in our model. We provide NP-Hardness results for electing an ideal set of representatives, discuss pathologies, and demonstrate empirically that common multi-winner election rules for selecting representatives do not perform well in expectation. To analyze the effects of adding delegation to representative voting systems, we begin by providing theoretical results on how issue-specific delegations determine outcomes. Finally, we provide empirical results comparing the outcomes of various voting systems: Representative Democracy, Proxy Voting, and FRD with issue-specific delegations. Our results show that variants of Proxy Voting yield no discernible benefit over unweighted representatives and reveal the potential for Flexible Representative Democracy to improve outcomes as voter participation increases.

     
    more » « less
  2. Synthetic data is a useful resource for algorithmic research. It allows for the evaluation of systems under a range of conditions that might be difficult to achieve in real world settings. In recommender systems, the use of synthetic data is somewhat limited; some work has concentrated on building user-item interaction data at large scale. We believe that fairness-aware recommendation research can benefit from simulated data as it allows the study of protected groups and their interactions without depending on sensitive data that needs privacy protection. In this paper, we propose a novel type of data for fairness-aware recommendation: synthetic recommender system outputs that can be used to study re-ranking algorithms. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  3. Algorithmic fairness in recommender systems requires close attention to the needs of a diverse set of stakeholders that may have competing interests. Previous work in this area has often been limited by fixed, single-objective definitions of fairness, built into algorithms or optimization criteria that are applied to a single fairness dimension or, at most, applied identically across dimensions. These narrow conceptualizations limit the ability to adapt fairness-aware solutions to the wide range of stakeholder needs and fairness definitions that arise in practice. Our work approaches recommendation fairness from the standpoint of computational social choice, using a multi-agent framework. In this paper, we explore the properties of different social choice mechanisms and demonstrate the successful integration of multiple, heterogeneous fairness definitions across multiple data sets. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  4. Algorithmic fairness in the context of personalized recommendation presents significantly different challenges to those commonly encountered in classification tasks. Researchers studying classification have generally considered fairness to be a matter of achieving equality of outcomes (or some other metric) between a protected and unprotected group, and built algorithmic interventions on this basis. We argue that fairness in real-world application settings in general, and especially in the context of personalized recommendation, is much more complex and multi-faceted, requiring a more general approach. To address the fundamental problem of fairness in the presence of multiple stakeholders, with different definitions of fairness, we propose the Social Choice for Recommendation Under Fairness – Dynamic (SCRUF-D) architecture, which formalizes multistakeholder fairness in recommender systems as a two-stage social choice problem. In particular, we express recommendation fairness as a combination of an allocation and an aggregation problem, which integrate both fairness concerns and personalized recommendation provisions, and derive new recommendation techniques based on this formulation. We demonstrate the ability of our framework to dynamically incorporate multiple fairness concerns using both real-world and synthetic datasets. 
    more » « less
    Free, publicly-accessible full text available September 28, 2025
  5. We investigate the problem of determining a binary ground truth using advice from a group of independent reviewers (experts) who express their guess about a ground truth correctly with some independent probability (competence) p_i. In this setting, when all reviewers are competent with p >= 0.5, the Condorcet Jury Theorem tells us that adding more reviewers increases the overall accuracy, and if all p_i's are known, then there exists an optimal weighting of the reviewers. However, in practical settings, reviewers may be noisy or incompetent, i.e., p_i < 0.5, and the number of experts may be small, so the asymptotic Condorcet Jury Theorem is not practically relevant. In such cases we explore appointing one or more chairs (judges) who determine the weight of each reviewer for aggregation, creating multiple levels. However, these chairs may be unable to correctly identify the competence of the reviewers they oversee, and therefore unable to compute the optimal weighting. We give conditions when a set of chairs is able to weight the reviewers optimally, and depending on the competence distribution of the agents, give results about when it is better to have more chairs or more reviewers. Through numerical simulations we show that in some cases it is better to have more chairs, but in many cases it is better to have more reviewers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. Sometimes agents care not only about the outcomes of collective decisions but also about how decisions are made. Both the outcome and the procedure affect whether agents see a decision as legitimate or acceptable. We focus on incorporating agents’ preferences over decision-making processes into the process itself. Taking whole decisions, including decision rules and outcomes, to be the object of agent preferences rather than only decision outcomes, we (1) identify natural, plausible preference structures and key properties, (2) develop general mechanisms for aggregating these preferences to maximize the acceptability of decisions, and (3) analyze the performance of our acceptance-maximizing mechanisms. We apply our general approach to the setting of dichotomous choice, and compare the worst-case rates of acceptance achievable among populations of agents of different types. We include the special case of rule selection, or amendment, and show that amendment procedures proposed by Abramowitz et al. [2] achieve universal acceptance with certain agent types. 
    more » « less
  7. When it comes to collective decisions, we have to deal with the fact that agents have preferences over both decision outcomes and how decisions are made. If we create rules for aggregating preferences over rules, and rules for preferences over rules for preferences over rules, and so on, it would appear that we run into infinite regress with preferences and rules at successively higher “levels.” The starting point of our analysis is the claim that such regress should not be a problem in practice, as any such preferences will necessarily be bounded in complexity and structured coherently in accordance with some (possibly latent) normative principles. Our core contributions are (1) the identification of simple, intuitive preference structures at low levels that can be generalized to form the building blocks of preferences at higher levels, and (2) the de- velopment of algorithms for maximizing the number of agents with such low-level preferences who will “accept” a decision. We analyze algorithms for acceptance maximization in two different domains: asymmetric dichotomous choice and constitutional amendment. In both settings we study the worst-case performance of the appro- priate algorithms, and reveal circumstances under which universal acceptance is possible. In particular, we show that constitutional amendment procedures proposed recently by Abramowitz et al. [2] can achieve universal acceptance. 
    more » « less
  8. In representative democracies, regular election cycles are supposed to prevent misbehavior by elected officials, hold them accountable, and subject them to the “will of the people." Pandering, or dishonest preference reporting by candidates campaigning for election, undermines this democratic idea. Much of the work on Computational Social Choice to date has investigated strategic actions in only a single election. We introduce a novel formal model of pandering and examine the resilience of two voting systems, Representative Democracy (RD) and Flexible Representative Democracy (FRD), to pandering within a single election and across multiple rounds of elections. For both voting systems, our analysis centers on the types of strategies candidates employ and how voters update their views of candidates based on how the candidates have pandered in the past. We provide theoretical results on the complexity of pandering in our setting for a single election, formulate our problem for multiple cycles as a Markov Decision Process, and use reinforcement learning to study the effects of pandering by single candidates and groups of candidates over many rounds. 
    more » « less
  9. The explosion of conference paper submissions in AI and related fields has underscored the need to improve many aspects of the peer review process, especially the matching of papers and reviewers. Recent work argues that the key to improve this matching is to modify aspects of the bidding phase itself, to ensure that the set of bids over papers is balanced, and in particular to avoid orphan papers, i.e., those papers that receive no bids. In an attempt to understand and mitigate this problem, we have developed a flexible bidding platform to test adaptations to the bidding process. Using this platform, we performed a field experiment during the bidding phase of a medium-size international workshop that compared two bidding methods. We further examined via controlled experiments on Amazon Mechanical Turk various factors that affect bidding, in particular the order in which papers are presented [11, 17]; and information on paper demand [33]. Our results suggest that several simple adaptations, that can be added to any existing platform, may significantly reduce the skew in bids, thereby improving the allocation for both reviewers and conference organizers. 
    more » « less