Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lawson, Tracy (Ed.)Abstract Drought decreases water transport capacity of leaves and limits gas exchange, which involves reduced leaf leaf hydraulic conductance (Kleaf) in both the xylem and outside-xylem pathways. Some literature suggests that grapevines are hyper-susceptible to drought-induced xylem embolism. We combined Kleaf and gas exchange measurements, micro-computed tomography of intact leaves, and spatially explicit modeling of the outside-xylem pathways to evaluate the role of vein embolism and Kleaf in the responses of two different grapevine cultivars to drought. Cabernet Sauvignon and Chardonnay exhibited similar vulnerabilities of Kleaf and gs to dehydration, decreasing substantially prior to leaf xylem embolism. Kleaf and gs decreased by 80% for both cultivars by Ψ leaf approximately –0.7 MPa and –1.2 MPa, respectively, while leaf xylem embolism initiated around Ψ leaf = –1.25 MPa in the midribs and little to no embolism was detected in minor veins even under severe dehydration for both cultivars. Modeling results indicated that reduced membrane permeability associated with a Casparian-like band in the leaf vein bundle sheath would explain declines in Kleaf of both cultivars. We conclude that during moderate water stress, changes in the outside-xylem pathways, rather than xylem embolism, are responsible for reduced Kleaf and gs. Understanding this mechanism could help to ensure adequate carbon capture and crop performance under drought.more » « less
-
Abstract Frequent drought and high temperature conditions in California vineyards necessitate plant stress detection to support irrigation management strategies and decision making. Remote sensing provides a powerful tool to continuously monitor vegetation function across spatial and temporal scales. In this study, we utilized a tower-based optical-remote sensing system to continuously monitor four vineyard subplots in California’s Central Valley. We compared the performance of the greenness-based normalized difference vegetation index (NDVI) and the physiology-based photochemical reflectance index (PRI) to track variations of eddy covariance estimated gross primary productivity (GPP) during four stress events between July and September 2020. Our results demonstrate that NDVI was invariant during stress events. In contrast, PRI was effective at tracking the short-term stress-induced declines and recovery of GPP associated with soil water depletion and increased air temperature, as well as reductions in GPP from decreased PAR caused by smokey conditions from nearby fires. Canopy-scale remote sensing can provide continuous real-time data, and physiology-based vegetation indices such as PRI can be used to monitor variation of photosynthetic activity during stress events to aid in management decisions.more » « less
-
null (Ed.)Maintaining high rates of photosynthesis in leaves requires efficient movement of CO 2 from the atmosphere to the mesophyll cells inside the leaf where CO 2 is converted into sugar. CO 2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO 2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO 2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO 2 diffusion into and through the leaf, maintaining high rates of CO 2 supply to the leaf mesophyll despite declining atmospheric CO 2 levels during the Cretaceous.more » « less
-
Thomasson, J. Alex; Torres-Rua, Alfonso F. (Ed.)sUAS (small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models. An example of this progress is the application of sUAS information using the Two-Source Surface Energy Balance (TSEB) model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment - GRAPEX Project in California. With advances in frequent sUAS data collection for larger areas, sUAS information processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and tools necessary to process the data and validate the results is a limiting factor. For example, in the referred GRAPEX project, commercial software (ArcGIS and MS Excel) and Python and Matlab code are needed to complete the analysis. There is a need to assess and integrate research conducted with sUAS and surface energy balance models in a sharing platform to be easily migrated to high performance computing (HPC) resources. This research, sponsored by the National Science Foundation FAIR Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python). The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and replicable.more » « less
-
PremiseThe young seedling life stage is critical for reforestation after disturbance and for species migration under climate change, yet little is known regarding their basic hydraulic function or vulnerability to drought. Here, we sought to characterize responses to desiccation including hydraulic vulnerability, xylem anatomical traits, and impacts on other stem tissues that contribute to hydraulic functioning. MethodsLarix occidentalis,Pseudotsuga menziesii, andPinus ponderosa(all ≤6 weeks old) were imaged using x‐ray computed microtomography during desiccation to assess seedling biomechanical responses with concurrently measured hydraulic conductivity (ks) and water potential (Ψ) to assess vulnerability to xylem embolism formation and other tissue damage. ResultsIn non‐stressed samples for all species, pith and cortical cells appeared circular and well hydrated, but they started to empty and deform with decreasingΨwhich resulted in cell tearing and eventual collapse. Despite the severity of this structural damage, the vascular cambium remained well hydrated even under the most severe drought. There were significant differences among species in vulnerability to xylem embolism formation, with 78% xylem embolism inL. occidentalisbyΨof −2.1 MPa, but only 47.7% and 62.1% inP. ponderosaandP. menziesiiat −4.27 and −6.73 MPa, respectively. ConclusionsLarix occidentalisseedlings appeared to be more susceptible to secondary xylem embolism compared to the other two species, but all three maintained hydration of the vascular cambium under severe stress, which could facilitate hydraulic recovery by regrowth of xylem when stress is relieved.more » « less
An official website of the United States government

Full Text Available