skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Mclean, Jared"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Hawai‘i Climate Data Portal (HCDP) is designed to facilitate streamlined access to a wide variety of climate data and information for the State of Hawai‘i. Prior to the development of the HCDP, gridded climate products and point datasets were fragmented, outdated, not easily accessible, and not available in near–real time. To address these limitations, HCDP researchers developed the cyberinfrastructure necessary to 1) operationalize data acquisition and product production in a near-real-time environment and 2) make data and products easily accessible to a wide range of users. The HCDP hosts several high-resolution (250 m) gridded products including monthly rainfall and daily temperature (maximum, minimum, and mean), station data, and gridded future projections of rainfall and temperature. HCDP users can visualize both gridded and point data, create and download custom maps, and query station and gridded data for export with relative ease. The “virtual station” feature allows users to create a climate time series at any grid point. The primary objective of the HCDP is to promote sharing and access to data and information to streamline research activities, improve awareness, and promote the development of tools and resources that can help to build adaptive capacities. The HCDP products have the potential to serve a wide range of users including researchers, resource managers, city planners, engineers, teachers, students, civil society organizations, and the broader community. 
    more » « less
  2. This article discusses the design and implementation of the Hawai'i Groundwater Recharge Tool, an application for providing data and analyses of the impacts of land-cover modifications and changes in precipitation on groundwater-recharge rates for the island of O'ahu. This application uses simulation data based on a set of 29 land-cover types and 2 precipitation conditions to provide users with real-time recharge calculations for interactively defined land-cover modifications. The tool provides two visualizations, representing the land cover for the island and the resultant groundwater-recharge rates, and a set of metrics indicating the changes to groundwater recharge for relevant areas to present a set of easily interpretable outcomes based on user-defined scenarios. Users have varying degrees of control over the granularity of data input and output, allowing for the quick production of a roughly defined scenario, or more precise land-cover definitions. These modifications can be exported for further analysis. Heuristics are used to provide a responsive user interface and performant integration with the database containing the full set of simulation data. This tool is designed to provide user-friendly access to the information on the impacts of land-cover and precipitation changes on groundwater-recharge rates needed to assist in making data-driven decisions. 
    more » « less
  3. This paper discusses the design and implementation of the Hawai‘i Rainfall Analysis and Mapping Application (HI-RAMA) decision support tool. HI-RAMA provides researchers and community stakeholders interactive access to and visualization of hosted historical and near-real-time monthly rainfall maps and aggregated rainfall station observational data for the State of Hawai‘i. The University of Hawai‘i Information Technology Services Cyberinfrastructure team in partnership with members of the Hawai‘i Established Program to Stimulate Competitive Research (EPSCoR) ‘Ike Wai project team developed this application as part of the ‘Ike Wai Gateway to support water sustainability research for the state of Hawai‘i. This tool is designed to provide user-friendly access to information that can reveal the impacts of climate changes related to precipitation so users can make data-driven decisions. 
    more » « less
  4. Abstract Gridded air temperature data are required in various fields such as ecological modeling, weather forecasting, and surface energy balance assessment. In this work, a piecewise multiple linear regression model is used to produce high‐resolution (250 m) daily maximum (Tmax), minimum (Tmin), and mean (Tmean) near‐surface air temperature maps for the State of Hawaiʻi for a 32‐year period (1990–2021). Multiple meteorological and geographical variables such as the elevation, daily rainfall, coastal distance index, leaf area index, albedo, topographic position index, and wind speed are independently tested to determine the most well‐suited predictor variables for optimal model performance. During the mapping process, input data scarcity is addressed first by gap‐filling critical stations at high elevation using a predetermined linear relationship with other strongly‐correlated stations, and second, by supplementing the training dataset with station data from neighboring islands. Despite the numerous covariates physically linked to temperature, the most parsimonious model selection uses elevation as its sole predictor, and the inclusion of the additional variables results in increased cross‐validation errors. The mean absolute error of resultant estimatedTmaxandTminmaps over the Hawaiian Islands from 1990 to 2021 is 1.7°C and 1.3°C, respectively. Corresponding bias values are 0.01°C and −0.13°C, respectively for the same variables. Overall, the results show the proposed methodology can robustly generate daily air temperature maps from point‐scale measurements over complex topography. 
    more » « less
  5. Abstract — SAGE (the Scalable Adaptive Graphics Environment) and its successor SAGE2 (the Scalable Amplified Group Environment) are operating systems for managing content across wideband display environments. This paper documents the prevalent usage patterns of SAGE-enabled display walls in support of the e-Science enterprise, based on nearly 15 years of observations of the SAGE community. These patterns will help guide e-Science users and cyberinfrastructure developers on how best to leverage large tiled display walls, and the types of software services that could be provided in the future. 
    more » « less
  6. Abstract Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (R2= 0.78; MAE = 55 mm month−1; 1.4%); however, predictions can underestimate high rainfall observations (bias = 34 mm month−1; −1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact that validation statistics should not be the sole source of error assessment and that default parameterizations for automated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed through the Hawai‘i Data Climate Portal (HCDP;http://www.hawaii.edu/climate-data-portal). Significance StatementA new method is developed to map rainfall in Hawai‘i using an optimized geostatistical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation. A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine learning algorithm can be trained to evaluate and classify an unrealistic map output. 
    more » « less