Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Colorado River supplies >40 million people in the United States Southwest with their daily water supply and is unable to meet the current demands. New approaches are needed to enhance sustainability and resilience. A net zero urban water (NZUW) approach meets the needs of a given community with a locally available and sustainable water supply, without detriment to interconnected systems and the long-term water supply. Transitioning to a NZUW future will require considerable modifications to governance and policy across the Southwest and its cities specifically. We identify five areas of governance and policy challenges: diversified water sources and sinks; planning, design, and operation; monitoring and enforcement; coordination; and addressing equity and justice. Four case study cities are investigated: Albuquerque, Denver, Los Angeles, and Tucson. Across these cities, the policy priorities include supporting potable water reuse, coordinating policies across jurisdictions for alternative water sources, addressing equity and justice, developing and incentivizing water conservation plans, and making aquifer storage and recovery projects easier and more economical to pursue. We conclude that a NZUW transition in the Southwest faces considerable governance and policy challenges, but moving cities toward this goal is crucial.more » « lessFree, publicly-accessible full text available May 10, 2025
-
A nine-year time series of nutrient cation and anion concentration and efflux from three forested catchments in the Jemez River Basin Critical Zone Observatory (JRB-CZO) in northern New Mexico was used to quantify the pulse of chemical denudation resulting from varying levels stand-replacing wildfire intensity in May-June of 2013. The 3 years of pre-fire and 6 years of postfire data were also probed to shed light on the mechanisms underlying the pulsed release and the subsequent recovery. The initial large solute pulse released to the streams—K+, Ca2+, Mg2+, SO
, Cl−, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN)—was caused by leaching of hillslope ash deposits during the first monsoon storms post-fire. Debris flow following the wildfire likely redistributed much of the ash-containing sediments along streams and valley bottoms. Sustained elevated solute concentrations observed in the surface waters throughout the post-fire period relative to pre-fire baselines is consistent with these soluble materials being periodically flushed from the soils during wet seasons, i.e., snowmelt and summer monsoons. As microbial mediated reactions and biotic uptake—due to plant regrowth—recover after fire, nutrient ion export (e.g., NO , Cl−and SO ) steadily decreased toward the end of the post fire period, but remained above pre-fire levels, particularly for NO and SO . Surface water concentrations of polyvalent cations (e.g., Al and Fe) decreased significantly after the fire. Our observations suggest that changes in organic matter composition after fire (e.g., increased humification index—HIX) and the presence of pyrogenic carbon may not favor organo-metal complexation and transport. Finally, differences in burn severity among the three watersheds presented in this study, provide insights of the relative impact of solute exports and resilience. The catchments that experienced high burn severity exhibited greater solute fluxes than the less severely burn. Moreover, despite these differences, toward the end of the post-fire period these surface waters presented low and similar solute effluxes, indicating system recovery. Nonetheless, magnitudes and rebounds were solute and process specific. The results of this study highlight the importance of surface and near surface physical and biogeochemical processes on the long-lasting geochemical denudation of forested catchments following wildfires of varying intensities. -
Abstract Since the 1987 Clean Water Act Section 319 amendment, the US Government has required and funded the development of nonpoint source pollution programs with about $5 billion dollars. Despite these expenditures, nonpoint source pollution from urban watersheds is still a significant cause of impaired waters in the United States. Urban stormwater management has rapidly evolved over recent decades with decision-making made at a local or city scale. To address the need for a better understanding of how stormwater management has been implemented in different cities, we used stormwater control measure (SCM) network data from 23 US cities and assessed what physical, climatic, socioeconomic, and/or regulatory explanatory variables, if any, are related to SCM assemblages at the municipal scale. Spearman’s correlation and Wilcoxon rank-sum tests were used to investigate relationships between explanatory variables and SCM types and assemblages of SCMs in each city. The results from these analyses showed that for the cities assessed, physical explanatory variables (e.g. impervious percentage and depth to water table) explained the greatest portion of variability in SCM assemblages. Additionally, it was found that cities with combined sewers favored filters, swales and strips, and infiltrators over basins, and cities that are under consent decrees with the Environmental Protection Agency tended to include filters more frequently in their SCM inventories. Future work can build on the SCM assemblages used in this study and their explanatory variables to better understand the differences and drivers of differences in SCM effectiveness across cities, improve watershed modeling, and investigate city- and watershed-scale impacts of SCM assemblages.
-
Current understanding of the dynamic and slow flow paths that support streamflow in mountain headwater catchments is inhibited by the lack of long-term hydrogeochemical data and the frequent use of short residence time age tracers. To address this, the current study combined the traditional mean transit time and the state-of-the-art fraction of young water ( F yw ) metrics with stable water isotopes and tritium tracers to characterize the dynamic and slow flow paths at Marshall Gulch, a sub-humid headwater catchment in the Santa Catalina Mountains, Arizona, USA. The results show that F yw varied significantly with period when using sinusoidal curve fitting methods (e.g., iteratively re-weighted least squares or IRLS), but not when using the transit time distribution (TTD)-based method. Therefore, F yw estimates from TTD-based methods may be particularly useful for intercomparison of dynamic flow behavior between catchments. However, the utility of 3 H to determine F yw in deeper groundwater was limited due to both data quality and inconsistent seasonal cyclicity of the precipitation 3 H time series data. Although a Gamma-type TTD was appropriate to characterize deep groundwater, there were large uncertainties in the estimated Gamma TTD shape parameter arising from the short record length of 3 H in deep groundwater. This work demonstrates how co-application of multiple metrics and tracers can yield a more complete understanding of the dynamic and slow flow paths and observable deep groundwater storage volumes that contribute to streamflow in mountain headwater catchments.more » « less
-
Abstract High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 °C in the most humid city, Miami, FL, and 5.6 °C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures.
-
Abstract High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.
-
Abstract Catchment‐scale response functions, such as transit time distribution (TTD) and evapotranspiration time distribution (ETTD), are considered fundamental descriptors of a catchment's hydrologic and ecohydrologic responses to spatially and temporally varying precipitation inputs. Yet, estimating these functions is challenging, especially in headwater catchments where data collection is complicated by rugged terrain, or in semi‐arid or sub‐humid areas where precipitation is infrequent. Hence, we developed practical approaches for estimating both TTD and ETTD from commonly available tracer flux data in hydrologic inflows and outflows without requiring continuous observations. Using the weighted wavelet spectral analysis method of Kirchner and Neal [2013] for δ18O in precipitation and stream water, we calculated TTDs that contribute to streamflow via spatially and temporally variable flow paths in a sub‐humid mountain headwater catchment in Arizona, United States. Our results indicate that composite TTDs (a combination of Piston Flow and Gamma TTDs) most accurately represented this system for periods up to approximately 1 month, and that a Gamma TTD was most appropriate thereafter during both winter and summer seasons and for the overall time‐weighted TTD; a Gamma TTD type was applicable for all periods during the dry season. The TTD results also suggested that old waters, i.e., beyond the applicable tracer range, represented approximately 3% of subsurface contributions to streamflow. For ETTD and using δ18O as a tracer in precipitation and xylem waters, a Gamma ETTD type best matched the observations for all seasons and for the overall time‐weighted pattern, and stable water isotopes were effective tracers for the majority of vegetation source waters. This study addresses a fundamental question in mountain catchment hydrology; namely, how do the spatially and temporally varying subsurface flow paths that support catchment evapotranspiration and streamflow modulate water quantity and quality over space and time.