skip to main content

Search for: All records

Creators/Authors contains: "Mejia, Joel Alejandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the spring of 2021, the University of San Diego’s Department of Integrated Engineering taught the course, “Integrated Approach to Energy”, the second offering of a new required course, to nine second-year engineering students. The sociotechnical course covered modern energy concepts, with an emphasis on renewable energies and sustainability, and it exposed the students to other ways of being, knowing, and doing that deviated from the dominant masculine Western White colonial discourse. Following the course completion, we interviewed five students by using a semistructured protocol to explore how they perceived of and communicated about engineers and engineering. We sought to identify the takeaways from their course exposure to sustainability and the sociotechnical paradigm, which were central to the course. The findings suggest that the students were beginning to form sociotechnical descriptions, and that they were still developing their understanding and perceptions of engineers and engineering. Moreover, we observed that they were still wrestling with how best to integrate sustainability into those perceptions. There was an a-la-carte feel to the students’ conceptualizations of sustainability as it related to engineering, as in, “you can ‘do’ sustainability with engineering, but do not have to”. We argue that engineering students likely need these pedagogicalmore »paradigms (sociotechnical engineering and sustainability) woven through the entirety of their engineering courses if they are to fully accept and integrate them into their own constructs about engineers and engineering.« less
  2. In this guest editorial, we problematize the terms Latiné, Latinx, Latina, Latino, and Hispanic used to describe people with Latin American ancestry in the United States to better inform engineering education scholarship and practice. As members of communities that have been classified as Latiné/x/a/o or Hispanic, we are always challenged with the questions: What term should be used in our research, and why? As scholars who are also members of these communities, we bridge the contradictions emerging from our lived experiences and imposed realities while seeking to engage in a critical conversation emerging from our “theory in the flesh” (Moraga & Anzaldua, 1981). While we situate the terms historically in this guest editorial, as an act of resistance, our title places the most recent term (Latiné) first to continue to challenge historical terminologies that demoralize and oppress our communities (Revelo et al., 2022). At the same time, we recognize that for some cultures, choosing to identify by one term over another has real-life implications and consequences, such as being the targets of discrimination and oppression and being seen as transgressors (Mejiaet al., 2022), or being perceived as insiders or outsiders.
  3. Engineers are increasingly called on to develop sustainable solutions to complex problems. Within engineering, however, economic and environmental aspects of sustainability are often prioritized over social ones. This paper describes how efficiency and sustainability were conceptualized and interrelated by students in a newly developed second-year undergraduate engineering course, An Integrated Approach to Energy. This course took a sociotechnical approach and emphasized modern energy concepts (e.g., renewable energy), current issues (e.g., climate change), and local and personal contexts (e.g., connecting to students’ lived experiences). Analyses of student work and semi-structured interview data were used to explore how students conceptualized sustainability and efficiency. We found that in this cohort (n = 17) students often approached sustainability through a lens of efficiency, believing that if economic and environmental resources were prioritized and optimized, sustainability would be achieved. By exploring sustainability and efficiency together, we examined how dominant discourses that privilege technical over social aspects in engineering can be replicated within an energy context.
  4. Within engineering, Western, White, colonial knowledge has historically been privileged over other ways of knowing. Few engineering educators recognize the impact of ethnocentricity and masculinity of the engineering curriculum on our students. In this paper we argue for a new approach, one which seeks to create an engineering curriculum that recognizes the great diversity of cultural practices that exist in the world. We begin by reviewing key ideas from three pedagogies not typically incorporated in engineering education: Culturally Relevant/Responsive Pedagogy, Culturally Sustaining Pedagogy, and Indigenous Pedagogy. We then present our attempts to develop an engineering curricula informed by these practices. We describe interventions we have tried at two levels: modules within traditional engineering sciences and entirely new courses. We aim to convince readers that these pedagogies may be a key tool in changing the dominant discourse of engineering education, improving the experience for those students already here, and making it more welcoming to those who are not.
  5. The global pandemic of COVID-19 brought about the transition to Emergency Remote Teaching (ERT) at higher education institutions across the United States, prompting both students and the faculty to rapidly adjust to a different modality of teaching and learning. Other crises have induced disruptions to academic continuity (e.g., earthquakes, hurricanes), but not to the same extent as COVID-19, which has affected universities on a global scale. In this paper, we describe a qualitative case study where we interviewed 11 second-year Integrated Engineering students during the Spring 2020 semester to explore how they adapted to the transition to remote learning. Our results revealed several student challenges, how they used self-discipline strategies to overcome them, and how the faculty supported students in the classroom through a compassionate and flexible pedagogy. Faculty members showed compassion and flexibility by adjusting the curriculum and assessment and effectively communicating with students. This was especially important for the women participants in this study, who more frequently expressed utilizing pass/fail grading and the personal and gendered challenges they faced due to the pandemic. During this unprecedented crisis, we found that a key element for supporting students’ well-being and success is the faculty members communicating care and incorporating flexibilitymore »into their courses.« less
  6. What do engineering students in 2020 need to know about energy to be successful in the workplace and contribute to addressing society’s issues related to energy? Beginning with this question, we have designed a new course for second-year engineering students. Drawing on the interdisciplinary backgrounds of our diverse team of engineering instructors, we aimed to provide an introduction to energy for all engineering students that challenged the dominant discourse in engineering by valuing students’ lived experiences and bringing in examples situated in different cultural contexts. An Integrated Approach to Energy was offered for the first time in Spring 2020 for 18 students. In this paper, we describe the design of the course including learning objectives, content, and pedagogical approach. We assessed students’ learning using exams and the impact of the overall course using interviews. Students demonstrated achievement of the learning objectives in technical areas. In addition, interviews revealed that they learned about environmental, economic, and social aspects of engineering practice. We intend for this course to serve as a model of engineering as a sociotechnical endeavor by challenging students with scenarios that are technically demanding and require critical thinking about contextual implications.