skip to main content


This content will become publicly available on June 25, 2024

Title: Board 281: Examining Scripts of Whiteness in Engineering Education
Funded by the National Science Foundation (NSF) Racial Equity in STEM Education Program, this project aims to deeply interrogate the influence and pervasiveness of Whiteness in engineering culture. While there has been substantial research into the masculinity of engineering, Whiteness has received far less attention. We claim the centrality of Whiteness in engineering curricula informs the culture, climate, and discourse of engineering education, leading to an exclusionary culture within engineering as reflected by the lack of diversity and lower retention of students and faculty of color, and contributes to systemic barriers negatively impacting racial equity. Moving towards racial equity in engineering education requires a fundamental shift in thinking in two important ways: 1) we must reframe how we think about underserved populations from minority to minoritized by a dominant discourse, and 2) to begin to dismantle the impacts of Whiteness, we must first make this barrier visible. In the first year of this project, the diverse team of PIs began to explore scripts of Whiteness in engineering education by conducting a collaborative autoethnography through documenting and analyzing their own experiences facing, enacting, and challenging scripts of Whiteness in engineering spaces. A collaborative autoethnography (CAE) takes a collaborative approach to the process of critical self reflection and can be conducted in many forms, such as such as collecting personal memory data (e.g., journaling), interviewing each other, facilitating intentional dialogue, or observing each other (e.g., in the classroom). CAE is not a linear process, but requires an ongoing dialogue (conversations, negotiations, or even arguments) between researcher team members over a long period (at least months, if not years). Our diverse viewpoints and years-long experience working together facilitated rich conversations that let us interrogate the ways in which Whiteness reveals its form differently depending on one’s positionality. In the later years of the project, we will create a faculty development program intended to help engineering faculty develop their critical consciousness and begin to decenter Whiteness from their ways of thinking and discourses (i.e., beliefs, attitudes, value systems, actions, etc.) so they can begin to critically think about promoting and enacting practices that move engineering education toward racial equity. Although the pathway to critical consciousness is not linear, it is a one-way street; once faculty begin to see the systemic barriers (such as those created by scripts of Whiteness) around them, there is no going back. In the long term, we hope to lay the groundwork for recognizing, interrogating, and eventually dismantling forces of systemic oppression in engineering higher education.  more » « less
Award ID(s):
2140646
NSF-PAR ID:
10432401
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ] to enhance the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation. 
    more » « less
  2. The culture within engineering colleges and departments has been historically quiet when considering social justice issues. Often the faculty in those departments are less concerned with social issues and are primarily focused on their disciplines and the concrete ways that they can make impacts academically and professionally in their respective arena’s. However, with the social climate of the United States shifting ever more towards a politically charged climate, and current events, particularly the protests against police brutality in recent years, faculty and students are constantly inundated with news of injustices happening in our society. The murder of George Floyd on May 25th 2020 sent shockwaves across the United States and the world. The video captured of his death shared across the globe brought everyone’s attention to the glaringly ugly problem of police brutality, paired with the COVID-19 pandemic, and US election year, the conditions were just right for a social activist movement to grow to a size that no one could ignore. Emmanuel Acho spoke out, motivated by injustices seen in the George Floyd murder, initially with podcasts and then by writing his book “Uncomfortable Converstations with a Black Man” [1]. In his book he touched on various social justice issues such as: racial terminology (i.e., Black or African American), implicit biases, white privilege, cultural appropriation, stereotypes (e.g., the “angry black man”), racial slurs (particularly the n-word), systemic racism, the myth of reverse racism, the criminal justice system, the struggles faced by black families, interracial families, allyship, and anti-racism. Students and faculty at Anonymous University felt compelled to set aside the time to meet and discuss this book in depth through the video conferencing client Zoom. In these meetings diverse facilitators were tasked with bringing the topics discussed by Acho in his book into conversation and pushing attendees of these meetings to consider those topics critically and personally. In an effort to avoid tasking attendees with reading homework to be able to participate in these discussions, the discussed chapter of the audiobook version of Acho’s book was played at the beginning of each meeting. Each audiobook chapter lasted between fifteen and twenty minutes, after which forty to forty-five minutes were left in the hour-long meetings to discuss the content of the chapter in question. Efforts by students and faculty were made to examine how some of the teachings of the book could be implemented into their lives and at Anonymous University. For broader topics, they would relate the content back to their personal lives (e.g., raising their children to be anti-racist and their experiences with racism in American and international cultures). Each meeting was recorded for posterity in the event that those conversations would be used in a paper such as this. Each meeting had at least one facilitator whose main role was to provide discussion prompts based on the chapter and ensure that the meeting environment was safe and inclusive. Naturally, some chapters address topics that are highly personal to some participants, so it was vital that all participants felt comfortable and supported to share their thoughts and experiences. The facilitator would intervene if the conversation veered in an aggressive direction. For example, if a participant starts an argument with another participant in a non-constructive manner, e.g., arguing over the definition of ethnicity, then the facilitator will interrupt, clear the air to bring the group back to a common ground, and then continue the discussion. Otherwise, participants were allowed to steer the direction of the conversation as new avenues of discussion popped up. These meetings were recorded with the goal of returning to these conversations and analyzing the conversations between attendees. Grounded theory will be used to first assess the most prominent themes of discussion between attendees for each meeting [2]. Attendees will be contacted to expressly ask their permission to have their words and thoughts used in this work, and upon agreement that data will begin to be processed. Select attendees will be asked to participate in focus group discussions, which will also be recorded via Zoom. These discussions will focus around the themes pulled from general discussion and will aim to dive deeper into the impact that this experience has had on them as either students or faculty members. A set of questions will be developed as prompts, but conversation is expected to evolve organically as these focus groups interact. These sessions will be scheduled for an hour, and a set of four focus groups with four participants are expected to participate for a total of sixteen total focus group participants. We hope to uncover how this experience changed the lives of the participants and present a model of how conversations such as this can promote diversity, equity, inclusion, and access activities amongst faculty and students outside of formal programs and strategic plans that are implemented at university, college, or departmental levels. 
    more » « less
  3. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  4. Team- and project-based pedagogies are increasingly normative in engineering education and beyond. Student teamwork holds the promise of developing collaborative skills deemed essential for new engineers by professional accreditation bodies such as ABET. The emphasis on these models, furthermore, reflects developments in pedagogical theory, stressing the importance of experiential learning and the social construction of knowledge, repositioning the instructor as a facilitator and guide. Teamwork in an educational context differs from that in professional contexts in that learning outcomes for all team members – both in terms of technical knowledge and team-working skills – are a primary goal of the activity, even while more tangible task-related outcomes might be the main concern of the students themselves. However, team-based learning also holds the potential for team members to have negative experiences, of which instructors may have little or no awareness, especially in real-time. Teams may achieve team-level outcomes required for successful completion, in spite of uneven levels of participation and contribution. Reduced participation on the part of an individual team member may have many causes, pro-active or reactive: it may be a deliberate refusal to engage, a lack of self-confidence, or a response to hostility from other members, among other possibilities. Inequitable team interactions will lead to uneven uptake of desired learning outcomes. Fostering equity in interactions and identifying inequitable practices among team members is therefore an important part of implementing team-based pedagogies, and an essential first step in identifying and challenging systematic patterns of inequity with regard to members of historically marginalized groups. This paper will therefore explore ways in which equity in group decision-making may be conceptualized and observed, laying the foundations for identifying and addressing inequities in the student experience. It will begin by considering different potential manifestations of interactional equity, surveying notions derived from prior education research in the fields of health, mathematics, engineering, and the natural sciences. These notions include: equity of participation on the basis of quantified vocal contributions (in terms of words, utterances, or clausal units); distribution and evolution of interactional roles; equity of idea endorsement and uptake; distribution of inchargeness and influence; equity of access to positional identities and discourse practices; and team member citizenship. In the paper’s empirical component, we trial measures of equity taken or developed from this literature on a small dataset of transcripts showing verbal interactions between undergraduate student team members in a first-year engineering design course. Some measures will be qualitative and others quantitative, depending on the particular form and manifestation of equity they are designed to examine. Measures include manual coding of speech acts and interactional ‘bids’, statistical measures of utterance frequency and length, and computational approaches to modeling interactional features such as social impact and receptivity. Results are compared with the students’ own reflections on the interactions, taken immediately afterward. Recommendations are made for the application of the measures, both from research and practice perspectives. Keywords: Teamwork, Equity, Interaction, Design 
    more » « less
  5. This work-in-progress research paper explores the intersection of cross-functional teamwork and design thinking within the course design process through collaborative autoethnography. Collaborative autoethnography uses individual and dialogic reflections to provide a detailed and nuanced exploration of experiences within a culture (e.g., a course design team) and generate insights that might inform broader community of individuals who experience related cultures. In this study, we investigate how individual educators attempt to shape and are shaped by a unique team course design process in electrical and computer engineering. The participant-researchers in this study are three electrical and computer engineering faculty members and one engineering education researcher who have participated in a six-semester-long course redesign effort. The effort has emphasized building and utilizing a new cross-functional team approach, imbued with design thinking strategies, to support improved professional formation and student-centeredness within an embedded systems course for electrical and computer engineering students. In this study, data collection and analysis were integrated and iterative. This process engaged cycles of setting writing prompts, individual writing, group discussion and reflection, and setting new writing prompts. This process was repeated as participant-researchers and the team as a whole refined their insights, explored emergent topics, and connected their observations to external research and scholarship. The autoethnographic process is ongoing, but five themes have emerged that describe key features of the team course design process and experience: (1) uncertainty, (2) navigating the team, (3) navigating the self, (4) navigating the system, and (5) process. The paper features a collection of participant-researcher reflections related to these emergent themes. 
    more » « less