skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution. 
    more » « less
  2. Abstract Changes in iceberg calving fluxes and oceanographic conditions around Antarctica have likely influenced the spatial and temporal distribution of iceberg fresh water fluxes to the surrounding ocean basins. However, Antarctic iceberg melt rate estimates have been limited to very large icebergs in the open ocean. Here we use a remote-sensing approach to estimate iceberg melt rates from 2011 to 2022 for 15 study sites around Antarctica. Melt rates generally increase with iceberg draft and follow large-scale variations in ocean temperature: maximum melt rates for the western peninsula, western ice sheet, eastern ice sheet and eastern peninsula are ~50, ~40, ~5 and ~5 m a−1, respectively. Iceberg melt sensitivity to thermal forcing varies widely, with a best-estimate increase in melting of ~24 m a−1°C−1and range from near-zero to ~100 m a−1°C−1. Variations in water shear likely contribute to the apparent spread in thermal forcing sensitivity across sites. Although the sensitivity of iceberg melt rates to water shear prevents the use of melt rates as a proxy to infer coastal water mass temperature variability, additional coastal iceberg melt observations will likely improve models of Southern Ocean fresh water fluxes and have potential for subglacial discharge plume mapping. 
    more » « less
  3. Direct observations of the oceans acquired on oceanographic research ships operated across the international community support fundamental research into the many disciplines of ocean science and provide essential information for monitoring the health of the oceans. A comprehensive knowledge base is needed to support the responsible stewardship of the oceans with easy access to all data acquired globally. In the United States, the multidisciplinary shipboard sensor data routinely acquired each year on the fleet of coastal, regional and global ranging vessels supporting academic marine research are managed by the Rolling Deck to Repository (R2R, rvdata.us) program. With over a decade of operations, the R2R program has developed a robust routinized system to transform diverse data contributions from different marine data providers into a standardized and comprehensive collection of global-ranging observations of marine atmosphere, ocean, seafloor and subseafloor properties that is openly available to the international research community. In this article we describe the elements and framework of the R2R program and the services provided. To manage all expeditions conducted annually, a fleet-wide approach has been developed using data distributions submitted from marine operators with a data management workflow designed to maximize automation of data curation. Other design goals are to improve the completeness and consistency of the data and metadata archived, to support data citability, provenance tracking and interoperable data access aligned with FAIR (findable, accessible, interoperable, reusable) recommendations, and to facilitate delivery of data from the fleet for global data syntheses. Findings from a collection-level review of changes in data acquisition practices and quality over the past decade are presented. Lessons learned from R2R operations are also discussed including the benefits of designing data curation around the routine practices of data providers, approaches for ensuring preservation of a more complete data collection with a high level of FAIRness, and the opportunities for homogenization of datasets from the fleet so that they can support the broadest re-use of data across a diverse user community. 
    more » « less
  4. The Association of American Universities (AAU) and the Association of Public and Land-grant Universities (APLU) have collaborated and led national discussions to improve public access to data resulting from federally funded research. As part of the NSF-funded (NSF # 1939279) Accelerating Public Access to Research Data Initiative, AAU and APLU convened representatives from the university teams at an Acceleration Conference in 2020 and facilitated two national Summits to help universities create robust systems for ensuring effective public access to high-quality research data and develop the current Guide. The Guide has been informed by 261 campus representatives from 111 institutions, representatives from several federal agencies, and other key stakeholders. The Guide is designed to help institutions develop and promote systems to support sharing of research data. It provides advice concerning actions that can be taken to improve access to research data on campuses. It also contains information about the infrastructure and support that may be required to facilitate data access, and it offers specific examples of how various institutions are approaching challenges to sharing research data and results. 
    more » « less
  5. null (Ed.)
    Colloidal semiconductor nanocrystals (NCs) represent a promising class of nanomaterials for lasing applications. Currently, one of the key challenges facing the development of high-performance NC optical gain media lies in enhancing the lifetime of biexciton populations. This usually requires the employment of charge-delocalizing particle architectures, such as core/shell NCs, nanorods, and nanoplatelets. Here, we report on a two-dimensional nanoshell quantum dot (QD) morphology that enables a strong delocalization of photoinduced charges, leading to enhanced biexciton lifetimes and low lasing thresholds. A unique combination of a large exciton volume and a smoothed potential gradient across interfaces of the reported CdS bulk /CdSe/CdS shell (core/shell/shell) nanoshell QDs results in strong suppression of Auger processes, which was manifested in this work though the observation of stable amplified stimulated emission (ASE) at low pump fluences. An extensive charge delocalization in nanoshell QDs was confirmed by transient absorption measurements, showing that the presence of a bulk-size core in CdS bulk /CdSe/CdS shell QDs reduces exciton–exciton interactions. Overall, present findings demonstrate unique advantages of the nanoshell QD architecture as a promising optical gain medium in solid-state lighting and lasing applications. 
    more » « less