skip to main content


Search for: All records

Creators/Authors contains: "Miranda, Elena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Basil Tikoff, Stacia Gordon (Ed.)
    Penrose Meeting, Developing a New Paradigm for the Late Cretaceous to Eocene North American Cordillera: A Dominantly Oblique Plate Boundary, Convened by Basil Tikoff, Stacia Gordon, William A. Matthews, Elena Centeno-Garcia, 18-25 August, McCall and Riggins, Idaho, USA 
    more » « less
  2. The Late Cretaceous arc flare-up event from 90 to 70 in the Transverse Ranges of the Southern California Batholith was temporally and spatially associated with the development of a large contractional shear system that includes discontinuous segments of the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. The age and kinematics of these shear zones inform the tectonic setting of the continental arc in Southern California during the beginning of the Laramide orogeny and during postulated large-magnitude dextral translations along the margin (the Baja-BC hypothesis). The Mt. Pinos sector of the Southern California Batholith preserves the intra-arc, transpressional Tumamait shear zone and the ductile-to-brittle Sawmill thrust, both of which record Late Cretaceous deformation. The batholith and shear zone are hosted by Mesoproterozoic biotite gneisses and migmatites (1750-1760 Ma), Neoproterozoic biotite granites (660 Ma), Permo-Triassic granitic gneisses and amphibolite (260-250 Ma), and Late Jurassic granites and gneisses (160-140 Ma). Late Cretaceous rocks are variably deformed and include porphyritic granodiorite gneisses and peraluminous granites emplaced at 86 to 70 Ma. Mylonites of the Tumamait shear zone affect all rocks in the area and generally strike NW-SE and dip moderately to the NE and SW. Mineral stretching lineations plunge shallowly to the SE. Mylonitic fabrics are folded into a regional, SE-plunging synform that results in alternating bands of sinistral and dextral shear fabrics. Syn-kinematic titanites from 5 mylonitic samples give a 720-700°C temperature range, and lower-intercept 206Pb/238U dates of 77.0 Ma, 76.8 Ma, 75.1 Ma, 74.2 Ma, and 74.0 Ma. Subsequent folding of the mylonite is linked to N-directed motion on the Sawmill thrust. 40Ar-39Ar thermochronology ages of 67-66 Ma and onlapping Eocene shales indicate Latest Cretaceous activity on the thrust, prior to Eocene arc collapse. Based on the age of the Tumamait shear zone, we speculate that it is related to sinistral deformation observed in the nearby Alamo Mountain-Piru Creek and the Black Belt shear zones. We attribute the younger Sawmill thrust to collision of the Hess oceanic plateau with the Southern California Batholith after 70 Ma. 
    more » « less
    Free, publicly-accessible full text available October 15, 2024
  3. In the eastern San Gabriel Mountains, located north of Los Angeles, California, the late Cenozoic Cucamonga thrust has uplifted and exposed the lower crustal root of the Mesozoic Southern California Batholith. We use structural data and U-Pb zircon analyses from these exposures to document changes in the style of intra-arc deformation in the batholith as the Laramide Orogeny began during the Late Cretaceous (at or after ~90 Ma). At the base of the uplifted section, a 4 km-thick package of metasedimentary rock records the intrusion of amphibolite, charnokite and other dikes of probable Jurassic to Early Cretaceous age. The oldest gneissic fabrics (S1, S2) in these rocks record Early Cretaceous partial melting, granulite-facies metamorphism, and top-to-the-S and -SE (present day reference frame) reverse motion on surfaces that dip moderately to the N and NW. These structures define a D1/D2 thrust system that formed on the trench side of the arc and was active during the Early Cretaceous. From 89-77 Ma this thrust system was reactivated by oblique-slip shear zones (D3) that record sinistral-reverse displacements on N- and NW-dipping surfaces. The timing of deformation in these latter shear zones is indicated by the age of 90-85 Ma syn-kinematic intrusions of the Tonalite of San Sevaine Lookout. After emplacement of the tonalite, the lower crustal section was deformed by a series of S-vergent, overturned folds. The emplacement of granodioritic dikes into the axial planes of some of these folds suggests that they formed during the latest stages of D3 transpression and tonalite emplacement. Superimposed on all these structures are a series of ductile-to-brittle thrust faults and folds that appear to be related to formation of the late Cenozoic Cucamonga thrust fault at the southern edge of the San Gabriel mountains. These data show that the Southern California Batholith in the San Gabriel Mountains records a tectonic transition from Early Cretaceous reverse faulting and crustal imbrication on the trench side of the arc to Late Cretaceous transpression and oblique sinistral-reverse deformation during a magmatic flare-up from 89-77 Ma. Another major episode of shortening and crustal imbrication occurred during the late Cenozoic when the Cucamonga thrust uplifted the San Gabriel block. 
    more » « less
    Free, publicly-accessible full text available October 18, 2024
  4. The Southern California Batholith is a ~500-km-wide segment of the Mesozoic California arc that lies between the northern Peninsular Ranges and the southern Sierra Nevada mountains. We use structural data and U-Pb zircon analyses from the eastern San Gabriel mountains to examine how the batholith responded to the onset of the Laramide orogeny during the Late Cretaceous. Zircon analyses show that the middle and lower crust of the batholith was hot and records a magmatic flareup from 90-77 Ma. From 90 to 86 Ma, tonalite of the San Sevaine Lookout intruded a thick package of metasedimentary rock that records a history of reverse displacements, crustal imbrication, and granulite metamorphism prior to tonalite intrusion. During the early stages of the magmatic flare-up, granodiorite dikes were emplaced and soon became tightly folded and disaggregated as younger sheets of comagmatic tonalite intruded. Deformation accompanied the magmatism, forming two parallel shear zones several 100 m thick. These two shear zones, which include the Black Belt Mylonite, are composed of thin (≤10 m) high-strain zones spaced several tens of meters apart. Each discrete high-strain zone contains subparallel layers of mylonite, ultramylonite, cataclasite and pseudotachylyte, all recording oblique sinistral-reverse displacements on gently and moderately dipping surfaces. This architecture, whereby individual high-strain zones are widely spaced and parallel the margins of intruding tonalite sheets, reveals the influence of magma emplacement on shear zone structure. U-Pb zircon geochronology on syn-tectonic dikes indicate that these different styles of deformation all formed within the same 89-85 Ma interval, suggesting that they reflect non-steady flow on deep seismogenic faults. Widespread (garnet) granulite-facies metamorphism and partial melting accompanied intrusion of the tonalites and sinistral- reverse displacements. The ages of undeformed dikes indicate that the deformation was over by 77-75 Ma. Together, these data show that arc magmatism and transpression within the Mesozoic California arc occurred from ~90 until ~75 Ma, implying that flat-slab subduction and the migration of the Laramide orogenic front into the North America interior occurred after ~75 Ma. 
    more » « less
    Free, publicly-accessible full text available October 15, 2024
  5. We present a new method of linking microstructures, electron backscatter diffraction (EBSD)–derived crystallographic vorticity axis (CVA) analysis, and titanite petrochronology to directly link fabric development to specific deformation events in shear zone rocks with complex histories. This approach is particularly useful where overprinting is incomplete, such that it is unknown which fabric is being dated by the petrochronometer. Here, we compared single-phase CVA patterns of fabric-forming minerals with those of synkinematic petrochronometers (e.g., titanite) to associate the timing of fabric development with deformational events in the middle crust of the George Sound shear zone, Fiordland, New Zealand. The host rocks to the George Sound shear zone include the Carboniferous Large Pluton, where titanite petrochronology demonstrates an unequivocally Cretaceous age of metamorphic titanite growth within mylonitic foliation. However, the host rocks show two distinct CVA patterns: a transtensional deformation event recorded by quartz and plagioclase, and a pure-shear–dominated transpressional deformation event recorded by biotite and titanite. Therefore, the transpressional CVA pattern of the titanite, coupled with its Cretaceous age, shows that it cannot be used to date the quartz and plagioclase fabric developed in response to an older transtensional deformation event. These results demonstrate the necessity of combining EBSD and CVA analysis with petrochronology to demonstrate that synkinematic accessory phase petrochronometers show the same kinematic deformation geometry (i.e., CVA pattern) as the fabric being dated. 
    more » « less
  6. The second day of the 2023 SCEC Rheology Workshop features a field trip to local exposures of shear zones that were exhumed by deformation along the San Andreas Fault System. We are headed to the Cucamonga mylonites (lower crust) and the Black Belt mylonites (middle crust) exposed in Cucamonga Canyon, near Rancho Cucamonga. 
    more » « less
  7. Abstract

    The Laramide orogeny is a pivotal time in the geological development of western North America, but its driving mechanism is controversial. Most prominent models suggest this event was caused by the collision of an oceanic plateau with the Southern California Batholith (SCB) which caused the angle of subduction beneath the continent to shallow and led to shut-down of the arc. Here, we use over 280 zircon and titanite Pb/U ages from the SCB to establish the timing and duration of magmatism, metamorphism and deformation. We show that magmatism was surging in the SCB from 90 to 70 Ma, the lower crust was hot, and cooling occurred after 75 Ma. These data contradict plateau underthrusting and flat-slab subduction as the driving mechanism for early Laramide deformation. We propose that the Laramide orogeny is a two-stage event consisting of: 1) an arc ‘flare-up’ phase in the SCB from 90-75 Ma; and 2) a widespread mountain building phase in the Laramide foreland belt from 75-50 Ma that is linked to subduction of an oceanic plateau.

     
    more » « less
  8. Throughout her career, Professor Sharon Mosher has been a pioneer in the structural analysis of polydeformed rocks and regions. Her work on the evolution of superposed rock fabrics in complexly deformed areas, for example, has greatly improved our ability to determine how faults, shear zones, and orogens evolve over time. Traditionally, sequences of foliations, mineral lineations, folds, and other structural elements have been interpreted in terms of discrete, multiphase deformation events. However, alternative interpretations where structural sequences result from a single, progressive event also are common, especially where changes in stress fields or flow parameters result in non-steady deformation. Here, in honor of Professor Mosher, we present examples of three different types of structural sequences that formed in large seismogenic faults and shear zones in SW New Zealand and southern California. These examples illustrate the different ways in which multiple generations and styles of rock fabrics develop and become preserved in zones of localized deformation. The first example is from a large fault zone located inboard of the Puysegur subduction zone in Fiordland, New Zealand. This zone displays several generations of superposed fabrics that record a history of repeated reactivations over a few tens of millions of years. A second set of examples, from both Fiordland and southern California, illustrates how non-steady deformation can result in parallel ductile and brittle fabrics, including veins of pseudotachylyte, that formed during a single, progressive shearing event. The third example, also from Fiordland, shows how parallel rock fabrics in a large, lower crustal shear zone formed diachronously across a large region as the inboard and outboard belts of the Mesozoic Median batholith converged. Each of these examples displays different structural relationships among rock fabrics in the field. To decipher their histories, we combined structural data with 40Ar/39Ar and U-Pb (zircon, titanite) geochronology. The examples illustrate the utility of combining field observations with both direct and indirect isotopic 
    more » « less