skip to main content

Search for: All records

Creators/Authors contains: "Mishra, Esha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The coordination chemistry of uranyl ions with surface immobilized peptides was studied using X-ray photoemission spectroscopy (XPS). All the peptides in the study were modified using a six-carbon alkanethiol as a linker on a gold substrate with methylene blue as the redox label. The X-ray photoemission spectra reveal that each modified peptide interacts differently with the uranyl ion. For all the modified peptides, the XPS spectra were taken in both the absence and presence of the uranium, and their comparison reveals that the interaction depends on the chemical group present in the peptides. The XPS results show that, among all the modified peptides in the current study, the (arginine)9 (R9) modified peptide showed the largest response to uranium. In the order of response to uranium, the second largest response was shown by the modified (arginine)6 (R6) peptide followed by the modified (lysine)6 (K6) peptide. Other modified peptides, (alanine)6 (A6), (glutamic acid)6 (E6) and (serine)6 (S6), did not show any response to uranium.
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available February 1, 2024
  3. Free, publicly-accessible full text available June 1, 2023
  4. Abstract X-ray Photoelectron Spectroscopy (XPS) has been used to study the interactions of heavy metal ions with DNA with some success. Surface sensitivity and selectivity of XPS are advantageous for identifying and characterizing the chemical and elemental structure of the DNA to metal interaction. This review summarizes the status of what amounts to a large part of the photoemission investigations of biomolecule interactions with metals and offers insight into the mechanism for heavy metal-bio interface interactions. Specifically, it is seen that metal interaction with DNA results in conformational changes in the DNA structure.
    Free, publicly-accessible full text available March 7, 2023
  5. From X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS), it is evident that the spin state transition behavior of Fe( ii ) spin crossover coordination polymer crystallites at the surface differs from the bulk. A comparison of four different coordination polymers reveals that the observed surface properties may differ from bulk for a variety of reasons. There are Fe( ii ) spin crossover coordination polymers with either almost complete switching of the spin state at the surface or no switching at all. Oxidation, differences in surface packing, and changes in coordination could all contribute to making the surface very different from the bulk. Some Fe( ii ) spin crossover coordination polymers may be sufficiently photoactive so that X-ray spectroscopies cannot discern the spin state transition.
  6. The [Co(SQ) 2 (4-CN-py) 2 ] complex exhibits dynamical effects over a wide range of temperature. The orbital moment, determined by X-ray magnetic circular dichroism (XMCD) with decreasing applied magnetic field, indicates a nonzero critical field for net alignment of magnetic moments, an effect not seen with the spin moment of [Co(SQ) 2 (4-CN-py) 2 ].
  7. Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e. , [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] and [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the Co II high-spin state.
  8. The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2}2(bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature.
  9. Thin films of poly-d-lysine act as polar organic and are also light sensitive. The capacitance-voltage, current-voltage, and transistor behavior were studied to gauge the photoresponse of possible poly-d-lysine thin film devices both with and without methylene blue as an additive. Transistors fabricated from poly-d-lysine act as inverse phototransistors, i.e., the on-state current is greatest in the absence of illumination. The poly-d-lysine thin film capacitance and the transistor current decrease with illumination, both with and without methylene blue as an additive. This suggests that the unbinding of photo exciton is significantly hindered in this system which is supported by the significant charge carrier lifetime for poly-d-lysine films both with and without methylene blue. For the majority carrier, the transistor geometry appears to depend on the gate voltage; in other words, the majority carrier depends on the polarization of the poly-d-lysine films, both with and without methylene blue as an additive.

    Free, publicly-accessible full text available March 18, 2023
  10. For the spin crossover coordination polymer [Fe(L1)(bipy)] n (where L1 is a N 2 O 2 2− coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine), there is compelling additional evidence of a spin state transition. Both Fe 2p X-ray absorption and X-ray core level photoemission spectroscopies confirm that a spin crossover takes place, as observed by magnetometry. Yet the details of the temperature dependent changes of the spin state inferred from both X-ray absorption and X-ray core level photoemission, differ from magnetometry, particularly with regard to the apparent critical transition temperatures and the cooperative nature of the curve progression in general. Comparing the experimental spin crossover data to Ising model simulations, a transition activation energy in the region of 160 to 175 meV is indicated, along with a nonzero exchange J . Overall, the implication is that there may be perturbations to the bistability of spin states, that are measurement dependent or that the surface differs from the bulk with regard to the cooperative effects observed upon spin transition.