Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Silicon is a common material for photonics due to its favorable optical properties in the telecom and mid-wave IR bands, as well as compatibility with a wide range of complementary metal–oxide semiconductor (CMOS) foundry processes. Crystalline inversion symmetry precludes silicon from natively exhibiting second-order nonlinear optical processes. In this work, we build on recent works in silicon photonics that break this material symmetry using large bias fields, thereby enablingχ(2)interactions. Using this approach, we demonstrate both second-harmonic generation (with a normalized efficiency of 0.20%W−1cm−2) and, to our knowledge, the first degenerateχ(2)optical parametric amplifier (with an estimated normalized gain of 0.6dBW−1/2cm−1) using silicon-on-insulator waveguides fabricated in a CMOS-compatible commercial foundry. We expect this technology to enable the integration of novel nonlinear optical devices such as optical parametric amplifiers, oscillators, and frequency converters into large-scale, hybrid photonic–electronic systems by leveraging the extensive ecosystem of CMOS fabrication.more » « less
-
Abstract This article reviews recent progress in quasi-phasematched nonlinear nanophotonics, with a particular focus on dispersion-engineered nonlinear interactions. Throughout this article, we establish design rules for the bandwidth and interaction lengths of various nonlinear processes, and provide examples for how these processes can be engineered in nanophotonic devices. In particular, we apply these rules towards the design of sources of non-classical light and show that dispersion-engineered devices can outperform their conventional counterparts. Examples include ultra-broadband optical parametric amplification as a resource for measurement-based quantum computation, dispersion-engineered spontaneous parametric downconversion as a source of separable biphotons, and synchronously pumped nonlinear resonators as a potential route towards single-photon nonlinearities.more » « less
-
Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1–2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.more » « less
-
Abstract Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.more » « less
-
Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of .more » « less
-
Periodically poled thin-film lithium niobate (TFLN) waveguides have emerged as a leading platform for highly efficient frequency conversion in the near-infrared. However, the commonly used silica bottom-cladding results in high absorption loss at wavelengths beyond 2.5 µm. In this work, we demonstrate efficient frequency conversion in a TFLN-on-sapphire platform, which features high transparency up to 4.5 µm. In particular, we report generating mid-infrared light up to 3.66 µm via difference-frequency generation of a fixed 1 µm source and a tunable telecom source, with normalized efficiencies up to . These results show TFLN-on-sapphire to be a promising platform for integrated nonlinear nanophotonics in the mid-infrared.more » « less