Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2025
-
A<sc>bstract</sc> A comprehensive study of the local and nonlocal amplitudes contributing to the decayB0→K*0(→K+π−)μ+μ−is performed by analysing the phase-space distribution of the decay products. The analysis is based onppcollision data corresponding to an integrated luminosity of 8.4 fb−1collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient$$ {\mathcal{C}}_9 $$ , responsible for vector dimuon currents, exhibits a 2.1σdeviation from the Standard Model expectation. The Wilson Coefficients$$ {\mathcal{C}}_{10} $$ ,$$ {\mathcal{C}}_9^{\prime } $$ and$$ {\mathcal{C}}_{10}^{\prime } $$ are all in better agreement than$$ {\mathcal{C}}_9 $$ with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions fromB0→ K*0[τ+τ−→ μ+μ−] rescattering, resulting in the first direct measurement of thebsττvector effective-coupling$$ {\mathcal{C}}_{9\tau } $$ .more » « lessFree, publicly-accessible full text available September 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
A search for hidden-charm pentaquark states decaying to a range of and final states, as well as doubly charmed pentaquark states to and , is made using samples of proton-proton collision data corresponding to an integrated luminosity of recorded by the LHCb detector at . Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of the baryon in the decay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases. © 2024 CERN, for the LHCb Collaboration2024CERNmore » « lessFree, publicly-accessible full text available August 1, 2025
-
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high ) hadron trigger in proton-proton and central Pb-Pb collisions at . A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter , 0.4, and 0.5 in the range and trigger-recoil jet azimuthal separation . The measurements exhibit a marked medium-induced jet yield enhancement at low and at large azimuthal deviation from . The enhancement is characterized by its dependence on , which has a slope that differs from zero by . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « lessFree, publicly-accessible full text available July 1, 2025
-
The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high ) charged hadron, in and central Pb-Pb collisions at center-of-mass energy per nucleon–nucleon collision TeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach which enables precise measurement of recoil jet distributions over a broad range in and jet resolution parameter . Recoil jet yields are reported for , 0.4, and 0.5 in the range and , where is the azimuthal angular separation between hadron trigger and recoil jet. The low- reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark–gluon plasma generated in high-energy nuclear collisions. Comparison of distributions from and central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching. ©2024 CERN, for the ALICE Collaboration2024CERNmore » « lessFree, publicly-accessible full text available July 1, 2025
-
A<sc>bstract</sc> A search for the fully reconstructed$$ {B}_s^0 $$ → μ+μ−γdecay is performed at the LHCb experiment using proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$ at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ,1.70] GeV/c2dimuon mass region excluding the contribution from the intermediateϕ(1020) meson, and in the region combining all dimuon-mass intervals.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Free, publicly-accessible full text available June 1, 2025
-
A<sc>bstract</sc> Measurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of$$ \sqrt{s_{\textrm{NN}}} $$ = 8.16 TeV and lead-lead (PbPb) collisions at$$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV are reported. The pPb and PbPb data sets correspond to integrated luminosities of 186 nb−1and 0.607 nb−1, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity (∆η) and relative azimuthal angle (∆ϕ), for various multiplicity and transverse momentum (pT) intervals. A multiplicity dependence of the balance function is observed in ∆ηand ∆ϕfor both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region<2 GeV, for pPb and PbPb results. Integrals of the balance functions are presented in both systems, and a mild dependence of the charge-balancing fractions on multiplicity is observed. No multiplicity dependence is observed at higher transverse momentum. The data are compared withhydjet,hijing, andamptgenerator predictions, none of which capture completely the multiplicity dependence seen in the data. The comparison of results with different center-of-mass energies suggests that the balance functions become narrower at higher energies, which is consistent with the idea of delayed hadronization and the effect of radial flow.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Measurements of the -dependent flow vector fluctuations in Pb–Pb collisions at using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, ] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the -dependent flow vector fluctuations at with two-particle correlations. Significant -dependent fluctuations of the flow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up to being present in the 5% most central collisions. In parallel, no evidence of significant -dependent fluctuations of or is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than significance in central collisions. These observations in collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high , which might be biased by -dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system. ©2024 CERN, for the ALICE Collaboration2024CERNmore » « lessFree, publicly-accessible full text available June 1, 2025