skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Molzahn, Daniel K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. This paper presents an algorithm for restoring AC power flow feasibility from solutions to simplified optimal power flow (OPF) problems, including convex relaxations, power flow approximations, and machine learning (ML) models. The proposed algorithm employs a state estimation-based post-processing technique in which voltage phasors, power injections, and line flows from solutions to relaxed, approximated, or ML-based OPF problems are treated similarly to noisy measurements in a state estimation algorithm. The algorithm leverages information from various quantities to obtain feasible voltage phasors and power injections that satisfy the AC power flow equations. Weight and bias parameters are computed offline using an adaptive stochastic gradient descent method. By automatically learning the trustworthiness of various outputs from simplified OPF problems, these parameters inform the online computations of the state estimation-based algorithm to both recover feasible solutions and characterize the performance of power flow approximations, relaxations, and ML models. Furthermore, the proposed algorithm can simultaneously utilize combined solutions from different relaxations, approximations, and ML models to enhance performance. Case studies demonstrate the effectiveness and scalability of the proposed algorithm, with solutions that are both AC power flow feasible and much closer to the true AC OPF solutions than alternative methods, often by several orders of magnitude in the squared two-norm loss function. 
    more » « less
  3. Machine learning models have been developed for a wide variety of power system applications. The accuracy of a machine learning model strongly depends on the selection of training data. In many settings where real data are limited or unavailable, machine learning models are trained using synthetic data sampled via different strategies. Using the task of approximating the voltage magnitudes associated with specified complex power injections as an illustrative application, this paper compares the performance of neural networks trained on four different sampling strategies: (i) correlated loads at fixed power factor, (ii) correlated loads at varying power factor, (iii) uncor-related loads at fixed power factor, and (iv) uncorrelated loads at varying power factor. A new sampling strategy that combines these four strategies into one training dataset is also introduced and assessed. Results from transmission and distribution test cases of varying sizes show that these strategies for creating synthetic training data yield varied neural network accuracy. The accuracy differences across the various strategies vary by up to a factor of four. While none of the first four strategies outperform the others across all test cases, neural networks trained with the combined dataset perform the best overall, maintaining a high accuracy and low error spreads. 
    more » « less
  4. This paper presents an algorithm to optimize the parameters of power systems equivalents to enhance the accuracy of the DC power flow approximation in reduced networks. Based on a zonal division of the network, the algorithm produces a reduced power system equivalent that captures inter-zonal flows with aggregated buses and equivalent transmission lines. The algorithm refines coefficient and bias parameters for the DC power flow model of the reduced network, aiming to minimize discrepancies between inter-zonal flows in DC and AC power flow results. Using optimization methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-memory BFGS (L-BFGS), and Truncated Newton Conjugate-Gradient (TNC) in an offline training phase, these parameters boost the accuracy of online DC power flow computations. In contrast to existing network equivalencing methods, the proposed algorithm optimizes accuracy over a specified range of operation as opposed to only considering a single nominal point. Numerical tests demonstrate substantial accuracy improvements over traditional equivalencing and approximation methods. 
    more » « less
  5. Combinatorial distribution system optimization problems, such as scheduling electric vehicle (EV) charging during evacuations, present significant computational challenges. These challenges stem from the large numbers of constraints, continuous variables, and discrete variables, coupled with the unbalanced nature of distribution systems. In response to the escalating frequency of extreme events impacting electric power systems, this paper introduces a method that integrates sample-based conservative linear power flow approximations (CLAs) into an optimization framework. In particular, this integration aims to ameliorate the aforementioned challenges of distribution system optimization in the context of efficiently minimizing the charging time required for EVs in urban evacuation scenarios. 
    more » « less
  6. The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this article presents an open-source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
    more » « less
  7. In this work, we consider two-stage quadratic optimization problems under ellipsoidal uncertainty. In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the second stage, the uncertainty is revealed, and the rest of the optimization variables (state variables) are set up as a solution to a known system of possibly nonlinear equations. This type of problem occurs, for instance, in optimization for dynamical systems, such as electric power systems as well as gas and water networks. We propose a convergent iterative algorithm to build a sequence of approximately robustly feasible solutions with an improving objective value. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of the second-stage equations while preserving the nonlinearity of other constraints. We implement our approach and demonstrate its performance on Matpower instances of AC optimal power flow. Although this paper focuses on quadratic problems, the approach is suitable for more general setups. 
    more » « less
  8. The admittance matrix encodes the network topology and electrical parameters of a power system in order to relate the current injection and voltage phasors. Since admittance matrices are central to many power engineering analyses, their characteristics are important subjects of theoretical studies. This paper focuses on the key characteristic of invertibility. Previous literature has presented an invertibility condition for admittance matrices. This paper first identifies and fixes a technical issue in the proof of this previously presented invertibility condition. This paper then extends this previous work by deriving new conditions that are applicable to a broader class of systems with lossless branches and transformers with off-nominal tap ratios. 
    more » « less