skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Monachesi, Antonela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The stellar halos of galaxies, primarily formed through the accretion and merger of smaller objects, are an important tool for understanding the hierarchical mass assembly of galaxies. However, the inner regions of stellar halos in disk galaxies are predicted to have an in situ component that is expected to be prominent along the major axis. Kinematic information is crucial to disentangle the contribution of the in situ component from the accreted stellar halos. The low surface brightness of stellar halos makes it inaccessible with traditional integrated light spectroscopy. In this work, we used a novel technique to study the kinematics of the stellar halo of the edge-on galaxy NGC 4945. We couple new deep Multi Unit Spectroscopic Explorer spectroscopic observations with existingHubbleSpace Telescope imaging data to spectroscopically measure the line-of-sight (LOS) heliocentric velocity and velocity dispersion in two fields at a galactocentric distance of 12.2 kpc (outer disk field) and 34.6 kpc (stellar halo field) along the NGC 4945 major axis, by stacking individual spectra of red giant branch and asymptotic giant branch stars. We obtained a LOS velocity and dispersion of 673 ± 11 km s−1and 73 ± 14 km s−1, respectively, for the outer disk field. This is consistent with the mean HI velocity of the disk at that distance. For the halo field, we obtained a LOS velocity and dispersion of 519 ± 12 km s−1and 42 ± 22 km s−1. The halo fields’ velocity measurement is within ∼40 km s−1from the systemic LOS velocity of NGC 4945, which is 563 km s−1, suggesting that its stellar halo at 34.6 kpc along the major axis is counter-rotating and its origins are likely to be the result of accretion. This provides the first-ever kinematic measurement of the stellar halo of a Milky Way-mass galaxy outside the Local Group from its resolved stellar population. Thus, we have established a powerful technique for measuring the velocity field for the stellar halos of nearby galaxies. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. Abstract Mergers of and interactions between galaxies imprint a wide diversity of morphological, dynamical, and chemical characteristics in stellar halos and tidal streams. Measuring these characteristics elucidates aspects of the progenitors of the galaxies we observe today. The M81 group is the perfect galaxy group to understand the past, present, and future of a group of galaxies in the process of merging. Here, we measure the end of star formation (t90) and metallicity ([M/H]) of the stellar halo of M82 and the eastern tidal stream of NGC 3077 to: (1) test the idea that M82 possesses a genuine stellar halo, formed before any interaction with M81; (2) determine if NGC 3077's tidal disruption is related to the star formation history in its tails; and (3) create a timeline of the assembly history of the central trio in the M81 group. We argue that M82 possesses a genuine, metal-poor ([M/H] ∼ −1.62 dex) stellar halo, formed from the merger of a small satellite galaxy roughly 6.6 Gyr ago. We also find that the stars present in NGC 3077's tails formed before tidal disruption with M81, and possess a roughly uniform metallicity as shown in S. Okamoto et al., implying that NGC 3077's progenitor had significant population gradients. Finally, we present a timeline of the central trio’s merger/interaction history. 
    more » « less
  3. ABSTRACT The star formation histories (SFHs) of galactic stellar haloes offer crucial insights into the merger history of the galaxy and the effects of those mergers on their hosts. Such measurements have revealed that while the Milky Way’s most important merger was 8–10 Gyr ago, M31’s largest merger was more recent, within the last few Gyr. Unfortunately, the required halo SFH measurements are extremely observationally expensive outside of the Local Group. Here, we use asymptotic giant branch (AGB) stars brighter than the tip of the red giant branch (RGB) to constrain stellar halo SFHs. Both stellar population models and archival data sets show that the AGB/RGB ratio constrains the time before which 90 per cent of the stars formed, t90. We find AGB stars in the haloes of three highly inclined roughly Milky Way-mass galaxies with resolved star measurements from the Hubble Space Telescope; this population is most prominent in the stellar haloes of NGC 253 and NGC 891, suggesting that their stellar haloes contain stars born at relatively late times, with inferred t90 ∼ 6 ± 1.5 Gyr. This ratio also varies from region to region, tending towards higher values along the major axis and in tidal streams or shells. By combining our measurements with previous constraints, we find a tentative anticorrelation between halo age and stellar halo mass, a trend that exists in models of galaxy formation but has never been elucidated before, i.e. the largest stellar haloes of Milky Way-mass galaxies were assembled more recently. 
    more » « less
  4. We present the first detailed chemical analysis from APOGEE-2S observations of stars in six regions of recently discovered substructures in the outskirts of the Magellanic Clouds extending to 20° from the Large Magellanic Cloud (LMC) center. We also present, for the first time, the metallicity andα-abundance radial gradients of the LMC and the Small Magellanic Cloud (SMC) out to 11° and 6°, respectively. Our chemical tagging includes 13 species including light,α-, and Fe-peak elements. We find that the abundances of all of these chemical elements in stars populating two regions in the northern periphery, along the northern “stream-like” feature, show good agreement with the chemical patterns of the LMC, and thus likely have an LMC origin. For substructures located in the southern periphery of the LMC we find more complex chemical and kinematical signatures, indicative of a mix of LMC-like and SMC-like populations. The southern region closest to the LMC shows better agreement with the LMC, whereas that closest to the SMC shows a much better agreement with the SMC chemical pattern. When combining this information with 3D kinematical information for these stars, we conclude that the southern region closest to the LMC likely has an LMC origin, whereas that closest to the SMC has an SMC origin and the other two southern regions have a mix of LMC and SMC origins. Our results add to the evidence that the southern substructures of the LMC periphery are the product of close interactions between the LMC and SMC, and thus likely hold important clues that can constrain models of their detailed dynamical histories. 
    more » « less
  5. ABSTRACT This study presents the results concerning six red giant stars members of the globular cluster NGC 6558. Our analysis utilized high-resolution near-infrared spectra obtained through the CAPOS initiative (the APOgee Survey of Clusters in the Galactic Bulge), which focuses on surveying clusters within the Galactic Bulge, as a component of the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2). We employ the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS) code to provide line-by-line elemental-abundances for Fe-peak (Fe, Ni), α-(O, Mg, Si, Ca, Ti), light-(C, N), odd-Z (Al), and the s-process element (Ce) for the four stars with high-signal-to-noise ratios. This is the first reliable measure of the CNO abundances for NGC 6558. Our analysis yields a mean metallicity for NGC 6558 of 〈[Fe/H]〉 = −1.15 ± 0.08, with no evidence for a metallicity spread. We find a Solar Ni abundance, 〈[Ni/Fe]〉 ∼ +0.01, and a moderate enhancement of α-elements, ranging between +0.16 and <+0.42, and a slight enhancement of the s-process element 〈[Ce/Fe]〉 ∼ +0.19. We also found low levels of 〈[Al/Fe]〉 ∼ +0.09, but with a strong enrichment of nitrogen, [N/Fe] > +0.99, along with a low level of carbon, [C/Fe] < −0.12. This behaviour of Nitrogen-Carbon is a typical chemical signature for the presence of multiple stellar populations in virtually all GCs; this is the first time that it is reported in NGC 6558. We also observed a remarkable consistency in the behaviour of all the chemical species compared to the other CAPOS bulge GCs of the same metallicity. 
    more » « less
  6. ABSTRACT The Magellanic Cloud system represents a unique laboratory for study of both interacting dwarf galaxies and the ongoing process of the formation of the Milky Way and its halo. We focus on one aspect of this complex, three-body interaction – the dynamical perturbation of the Small Magellanic Cloud (SMC) by the Large Magellanic Cloud (LMC), and specifically potential tidal effects on the SMC’s eastern side. Using Gaia astrometry and the precise radial velocities (RVs) and multielement chemical abundances from Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) Data Release 17, we explore the well-known distance bimodality on the eastern side of the SMC. Through estimated stellar distances, proper motions, and RVs, we characterize the kinematics of the two populations in the bimodality and compare their properties with those of SMC populations elsewhere. Moreover, while all regions explored by APOGEE seem to show a single chemical enrichment history, the metallicity distribution function (MDF), of the ‘far’ stars on the eastern periphery of the SMC is found to resemble that for the more metal-poor fields of the western periphery, whereas the MDF for the ‘near’ stars on the eastern periphery resembles that for stars in the SMC Centre. The closer eastern periphery stars also show RVs (corrected for SMC rotation and bulk motion) that are, on average, approaching us relative to all other SMC populations sampled. We interpret these trends as evidence that the near stars on the eastern side of the SMC represent material pulled out of the central SMC as part of its tidal interaction with the LMC. 
    more » « less
  7. Abstract It is not yet settled how the combination of secular processes and merging gives rise to the bulges and pseudobulges of galaxies. The nearby (D∼ 4.2 Mpc) disk galaxy M94 (NGC 4736) has the largest pseudobulge in the local universe, and offers a unique opportunity for investigating the role of merging in the formation of its pseudobulge. We present a first ever look at M94's stellar halo, which we expect to contain a fossil record of M94's past mergers. Using Subaru's Hyper Suprime-Cam, we resolve and identify red giant branch (RGB) stars in M94's halo, finding two distinct populations. After correcting for completeness through artificial star tests, we can measure the radial profile of each RGB population. The metal-rich RGB stars show an unbroken exponential profile to a radius of 30 kpc that is a clear continuation of M94's outer disk. M94's metal-poor stellar halo is detectable over a wider area and clearly separates from its metal-rich disk. By integrating the halo density profile, we infer a total accreted stellar mass of ∼2.8 × 108M, with a median metallicity of [M/H] = −1.4. This indicates that M94's most-massive past merger was with a galaxy similar to, or less massive than, the Small Magellanic Cloud. Few nearby galaxies have had such a low-mass dominant merger; therefore we suggest that M94's pseudobulge was not significantly impacted by merging. 
    more » « less
  8. Abstract M64, often called the “Evil Eye” galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a “flyby” interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell ofM= 1.80 ± 0.54 × 108Mand [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108Mfor the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite ofM⋆,prog≃ 5 × 108M. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk. 
    more » « less
  9. ABSTRACT The study of outer halo globular cluster (GC) populations can give insight into galaxy merging, GC accretion, and the origin of GCs. We use archival Subaru Hyper Suprime-Cam (HSC) data in concert with space-based GALEX, IRAC, and Gaia EDR3 data to select candidate GCs in the outer halo of the M81 group for confirmation and future study. We use a small sample of previously discovered GCs to tune our selection criteria, finding that bright already-known GCs in the M81 group have sizes that are typically slightly larger than the Subaru PSF in our fields. In the optical bands, GCs appear to have colours that are only slightly different from stars. The inclusion of archival IRAC data yields dramatic improvements in colour separation, as the long wavelength baseline aids somewhat in the separation from stars and clearly separates GCs from many compact background galaxies. We show that some previously spectroscopically identified GCs in the M81 group are instead foreground stars or background galaxies. GCs close to M82 have radial velocities, suggesting that they fell into the M81 group along with M82. The overall M81 GC luminosity function is similar to the Milky Way and M31. M81’s outer halo GCs are similar to the Milky Way in their metallicities and numbers, and much less numerous than M31’s more metal-rich outer halo GC population. These properties reflect differences in the three galaxies’ merger histories, highlighting the possibility of using outer halo GCs to trace merger history in larger samples of galaxies. 
    more » « less
  10. Abstract We report the first 3D kinematical measurements of 88 stars in the direction of several recently discovered substructures in the southern periphery of the Large Magellanic Cloud (LMC) using a combination of Gaia proper motions and radial velocities from the APOGEE-2 survey. More specifically, we explore stars in assorted APOGEE-2 pointings in a region of the LMC periphery where various overdensities of stars have previously been identified in maps of stars from Gaia and DECam. By using a model of the LMC disk rotation, we find that a sizable fraction of the APOGEE-2 stars have extreme space velocities that are distinct from, and not a simple extension of, the LMC disk. Using N -body hydrodynamical simulations of the past dynamical evolution and interaction of the LMC and Small Magellanic Cloud (SMC), we explore whether the extreme-velocity stars may be accounted for as tidal debris created in the course of that interaction. We conclude that the combination of LMC and SMC debris produced from their interaction is a promising explanation, although we cannot rule out other possible origins, and that these new data should be used to constrain future simulations of the LMC–SMC interaction. We also conclude that many of the stars in the southern periphery of the LMC lie outside of the LMC plane by several kiloparsecs. Given that the metallicity of these stars suggests that they are likely of Magellanic origin, our results suggest that a wider exploration of the past interaction history of the Magellanic Clouds is needed. 
    more » « less