Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding the mechanisms underlying nutrient (nitrogen and phosphorus) and carbon cycling in reefs is critical for effective management. Research on reef nutrient and carbon cycling needs to account for (i) the contributions of multiple organisms, (ii) abiotic and biotic drivers, and (iii) a social-ecological perspective. In this paper, we review the mechanisms underlying nutrient and carbon cycling in reef social-ecological systems and analyse them using causal loop analysis. We identify direct and indirect pathways and feedback loops through nutrient and carbon cycles that shape the dominant benthic state of reefs: coral, algal, and sponge-dominated states. We find that two of three anthropogenic impact scenarios (size-selective fishing and land use change) have primarily negative consequences for coral and macroalgae via the nutrient and carbon cycles. A third scenario (runoff) has fewer negative impacts on sponges compared to other benthos. In all scenarios, frequent positive feedback loops (size-selective fishing: 7 of 12 loops; runoff: 6 of 9 loops; land use change: 8 of 11 loops) lead to system destabilization; however, the presence of multiple loops introduces avenues whereby reefs may retain coral dominance despite anthropogenic pressures. Context-specific information on the relative strength of loops will be necessary to predict future reef state.more » « less
-
Abstract Marine protected areas (MPAs) are widely implemented tools for long‐term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance. Using a meta‐analytic framework, we evaluated the ability of MPAs to conserve fish biomass, richness, and diversity. At the scale of the network and for 3 of 4 regions, the biomass of species targeted by fishing was positively associated with the level of regulatory protection and was greater inside no‐take MPAs, whereas species not targeted by fishing had similar biomass in MPAs and areas open to fishing. In contrast, species richness and diversity were not as strongly enhanced by MPA protection. The key features of conservation effectiveness included MPA age, preimplementation fisheries pressure, and habitat diversity. Important drivers of MPA effectiveness for single MPAs were consistent across MPAs in the network, spanning regions and ecosystems. With international targets aimed at protecting 30% of the world's oceans by 2030, MPA design and assessment frameworks should consider conservation performance at multiple ecologically relevant scales, from individual MPAs to MPA networks.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Measuring socioeconomic indices at the scale of regions or countries is required in various contexts, in particular to inform public policies. The use of Deep Learning (DL) and Earth Observation (EO) data is becoming increasingly common to estimate specific variables like societal wealth. This paper presents an end- to-end framework ‘DeepWealth’ that calculates such a wealth index using open-source EO data and DL. We use a multidisciplinary approach incorporating satellite imagery, socio-economic data, and DL models. We demonstrate the effectiveness and generalizability of DeepWealth by training it on 24 African countries and deploying it in Madagascar, Brazil and Japan. Our results show that DeepWealth provides accurate and stable wealth index estimates with an 𝑅2 of 0.69. It empowers computer-literate users skilled in Python and R to estimate and visualize well-being-related data. This open-source framework follows FAIR (Findable, Accessible, Interoperable, Reusable) principles, providing data, source code, metadata, and training checkpoints with its source code made available on Zenodo and GitHub. In this manner, we provide a DL framework that is reproducible and replicable.more » « less
-
Abstract Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world’s coral reef fisheries.more » « less
-
Abstract Calls for using marine protected areas (MPAs) to achieve goals for nature and people are increasing globally. While the conservation and fisheries impacts of MPAs have been comparatively well‐studied, impacts on other dimensions of human use have received less attention. Understanding how humans engage with MPAs and identifying traits of MPAs that promote engagement is critical to designing MPA networks that achieve multiple goals effectively, equitably and with minimal environmental impact.In this paper, we characterize human engagement in California's MPA network, the world's largest MPA network scientifically designed to function as a coherent network (124 MPAs spanning 16% of state waters and 1300 km of coastline) and identify traits associated with higher human engagement. We assemble and compare diverse indicators of human engagement that capture recreational, educational and scientific activities across California's MPAs.We find that human engagement is correlated with nearby population density and that site “charisma” can expand human engagement beyond what would be predicted based on population density alone. Charismatic MPAs tend to be located near tourist destinations, have long sandy beaches and be adjacent to state parks and associated amenities. In contrast, underutilized MPAs were often more remote and lacked both sandy beaches and parking lot access.Synthesis and applications: These results suggest that achieving MPA goals associated with human engagement can be promoted by developing land‐based amenities that increase access to coastal MPAs or by locating new MPAs near existing amenities during the design phase. Alternatively, human engagement can be limited by locating MPAs in areas far from population centres, coastal amenities or sandy beaches. Furthermore, managers may want to prioritize monitoring, enforcement, education and outreach programmes in MPAs with traits that predict high human engagement. Understanding the extent to which human engagement impacts the conservation performance of MPAs is a critical next step to designing MPAs that minimize tradeoffs among potentially competing objectives. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face.more » « less
-
Abstract Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.more » « less
-
Abstract Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.more » « less
An official website of the United States government
