Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract More than half of the coronavirus disease 19 (COVID-19) related mortality rates in the United States and Europe are associated with long-term-care facilities (LTCFs) such as old-age organizations, nursing homes, and disability centers. These facilities are considered most vulnerable to spread of an pandemic like COVID-19 because of multiple reasons including high density of elderly population with a diverse range of medical requirements, limited resources, nursing activities/medications, and the role of external visitors. In this study, we aim to understand the role of visitor’s family members and specific interventions (such as use of face masks and restriction of visiting hours) on the dynamics of infection in a community using a mathematical model. The model considers two types of social contexts (community and LTCFs) with three different groups of interacting populations (non-mobile community individuals, mobile community individuals, and long-term facility residents). The goal of this work is to compare the outbreak burden between different centre of disease control (CDC) planning scenarios, which capture distinct types of intensity of diseases spread in LTCF observed during COVID-19 outbreak. The movement of community mobile members is captured via their average relative times in and out of the long-term facilities to understand the strategies that would work well in these facilities the CDC planning scenarios. Our results suggest that heterogeneous mixing worsens epidemic scenario as compared to homogeneous mixing and the epidemic burden is hundreds times greater for community spread than within the facility population.more » « less
-
COVID-19 pandemic has resulted in an over 60 % reduction in airtravel worldwide according to some estimates. The high economic and public perception costs of potential superspreading during air-travel necessitates research efforts that model, explain and mitigate disease spread. The long-duration exposure to infected passengers and the limited air circulation in the cabin are considered to be responsible for the infection spread during flight. Consequently, recent public health measures are primarily based on these aspects. However, a survey of recent on-flight outbreaks indicates that some aspects of the COVID-19 spread, such as long-distance superspreading, cannot be explained without also considering the movement of people. Another factor that could be influential but has not gained much attention yet is the unpredictable passenger behavior. Here, we use a novel infection risk model that is linked with pedestrian dynamics to accurately capture these aspects of infection spread. The model is parameterized through spatiotemporal analysis of a recent superspreading event in a restaurant in China. The passenger movement during boarding and deplaning, as well as the in-plane movement, are modeled with social force model and agent-based model respectively. We utilize the model to evaluate what-if scenarios on the relative effectiveness of policies and procedures such as masking, social distancing, as well as synergistic effects by combining different approaches in airplanes and other contexts. We find that in certain instances independent strategies can combine synergistically to reduce infection probability, by more than a sum of individual strategiesmore » « less
An official website of the United States government
