skip to main content


Search for: All records

Creators/Authors contains: "Niles-Weed, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Krause, Andreas ; Brunskill, Emma ; Cho, Kyunghyun ; Engelhardt, Barbara ; Sabato, Sivan ; Scarlett, Jonathan (Ed.)
    We consider the problem of estimating the optimal transport map between two probability distributions, P and Q in R^d, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution Q is a discrete measure supported on a finite number of points in R^d. We study a computationally efficient estimator initially proposed by Pooladian & Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate n^{−1/2}, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems. 
    more » « less
  3. Motivated by the statistical analysis of the discrete optimal transport problem, we prove distributional limits for the solutions of linear programs with random constraints. Such limits were first obtained by Klatt, Munk, & Zemel (2022), but their expressions for the limits involve a computationally intractable decomposition of R^m into a possibly exponential number of convex cones. We give a new expression for the limit in terms of auxiliary linear programs, which can be solved in polynomial time. We also leverage tools from random convex geometry to give distributional limits for the entire set of random optimal solutions, when the optimum is not unique. Finally, we describe a simple, data-driven method to construct asymptotically valid confidence sets in polynomial time. 
    more » « less
  4. We consider the problem of estimating the optimal transport map between two probability distributions, P and Q in Rd, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution Q is a discrete measure supported on a finite number of points in Rd. We study a computationally efficient estimator initially proposed by Pooladian and Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate n−1/2, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems. 
    more » « less