skip to main content


Search for: All records

Creators/Authors contains: "Noarov, Georgy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We make a connection between multicalibration and property elicitation and show that (under mild technical conditions) it is possible to produce a multicalibrated predictor for a continuous scalar distributional property G if and only if G is elicitable. On the negative side, we show that for non-elicitable continuous properties there exist simple data distributions on which even the true distributional predictor is not calibrated. On the positive side, for elicitable G, we give simple canonical algorithms for the batch and the online adversarial setting, that learn a G-multicalibrated predictor. This generalizes past work on multicalibrated means and quantiles, and in fact strengthens existing online quantile multicalibration results. To further counter-weigh our negative result, we show that if a property G1 is not elicitable by itself, but is elicitable conditionally on another elicitable property G0, then there is a canonical algorithm that jointly multicalibrates G1 and G0; this generalizes past work on mean-moment multicalibration. Finally, as applications of our theory, we provide novel algorithmic and impossibility results for fair (multicalibrated) risk assessment. 
    more » « less
  2. We make a connection between multicalibration and property elicitation and show that (under mild technical conditions) it is possible to produce a multicalibrated predictor for a continuous scalar property if and only if is elicitable. On the negative side, we show that for non-elicitable continuous properties there exist simple data distributions on which even the true distributional predictor is not calibrated. On the positive side, for elicitable , we give simple canonical algorithms for the batch and the online adversarial setting, that learn a -multicalibrated predictor. This generalizes past work on multicalibrated means and quantiles, and in fact strengthens existing online quantile multicalibration results. To further counter-weigh our negative result, we show that if a property is not elicitable by itself, but is elicitable conditionally on another elicitable property , then there is a canonical algorithm that jointly multicalibrates and ; this generalizes past work on mean-moment multicalibration. Finally, as applications of our theory, we provide novel algorithmic and impossibility results for fair (multicalibrated) risk assessment. 
    more » « less
  3. We develop fast distribution-free conformal prediction algorithms for obtaining multivalid coverage on exchangeable data in the batch setting. Multivalid coverage guarantees are stronger than marginal coverage guarantees in two ways: (1) They hold even conditional on group membership---that is, the target coverage level holds conditionally on membership in each of an arbitrary (potentially intersecting) group in a finite collection of regions in the feature space. (2) They hold even conditional on the value of the threshold used to produce the prediction set on a given example. In fact multivalid coverage guarantees hold even when conditioning on group membership and threshold value simultaneously. We give two algorithms: both take as input an arbitrary non-conformity score and an arbitrary collection of possibly intersecting groups , and then can equip arbitrary black-box predictors with prediction sets. Our first algorithm is a direct extension of quantile regression, needs to solve only a single convex minimization problem, and produces an estimator which has group-conditional guarantees for each group in . Our second algorithm is iterative, and gives the full guarantees of multivalid conformal prediction: prediction sets that are valid conditionally both on group membership and non-conformity threshold. We evaluate the performance of both of our algorithms in an extensive set of experiments. 
    more » « less
  4. We give a simple, generic conformal prediction method for sequential prediction that achieves target empirical coverage guarantees against adversarially chosen data. It is computationally lightweight -- comparable to split conformal prediction -- but does not require having a held-out validation set, and so all data can be used for training models from which to derive a conformal score. It gives stronger than marginal coverage guarantees in two ways. First, it gives threshold calibrated prediction sets that have correct empirical coverage even conditional on the threshold used to form the prediction set from the conformal score. Second, the user can specify an arbitrary collection of subsets of the feature space -- possibly intersecting -- and the coverage guarantees also hold conditional on membership in each of these subsets. We call our algorithm MVP, short for MultiValid Prediction. We give both theory and an extensive set of empirical evaluations. 
    more » « less
  5. null (Ed.)